Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let zz be a complex number such that z+z=3+i|z| + z = 3 + i (where i = 1\sqrt{-1} ). Then z|z| is equal to :

A

54\frac{5}{4}

B

414\frac{\sqrt{41}}{4}

C

343\frac{\sqrt{34}}{3}

D

53\frac{5}{3}

Answer

53\frac{5}{3}

Explanation

Solution

The correct answer is D:53\frac{5}{3}
Given that;
z+z=3+i|z| + z = 3 + i(where i=1i=\sqrt{-1})
z=3z+iz = 3 - |z| + i
Let 3z=a3 - |z| = a
z=(3a)(i)\Rightarrow |z| = (3 - a)-(i)
z=a+i\Rightarrow z=a+i
z=a2+1(ii)\Rightarrow \left|z\right| =\sqrt{a^{2}+1}-(ii)
Now equate (i) and (ii)
(3a)2=(a2+i2)2(3-a)^2=(\sqrt{a^2+i^2})^2
9+a26a=a2+1\Rightarrow 9+a^{2} -6a =a^{2}+1
a=86=43\Rightarrow a = \frac{8}{6} =\frac{4}{3}
z=343=53\Rightarrow \left|z\right| = 3 - \frac{4}{3} = \frac{5}{3}
mathematics