Question
Mathematics Question on complex numbers
Let z be a complex number such that ∣z+2∣=1 and Im(z+2z+1)=51. Then the value of ∣Re(z+2)∣ is:
A
56
B
51+6
C
524
D
526
Answer
526
Explanation
Solution
Let:
z+2=cosθ+isinθ⟹z+21=cosθ−isinθ.
Now:
z+2z+1=1−z+21=1−(cosθ−isinθ).
Simplify:
z+2z+1=(1−cosθ)+isinθ.
The imaginary part is:
Im(z+2z+1)=sinθ=51.
Using sin2θ+cos2θ=1:
cos2θ=1−sin2θ=1−(51)2=1−251=2524.
cosθ=±2524=±526.
Now, the real part of z+2 is:
Re(z+2)=cosθ.
The magnitude of ℜ(z+2) is:
∣ Re(z+2)∣=526.
Final Answer: 526.