Solveeit Logo

Question

Mathematics Question on complex numbers

Let zz be a complex number such that z+2=1|z + 2| = 1 and Im(z+1z+2)=15\text{Im}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}. Then the value of Re(z+2)|\text{Re}(z+2)| is:

A

65\frac{\sqrt{6}}{5}

B

1+65\frac{1+\sqrt{6}}{5}

C

245\frac{24}{5}

D

265\frac{2\sqrt{6}}{5}

Answer

265\frac{2\sqrt{6}}{5}

Explanation

Solution

Let:

z+2=cosθ+isinθ    1z+2=cosθisinθ.z + 2 = \cos \theta + i \sin \theta \implies \frac{1}{z + 2} = \cos \theta - i \sin \theta.

Now:

z+1z+2=11z+2=1(cosθisinθ).\frac{z + 1}{z + 2} = 1 - \frac{1}{z + 2} = 1 - (\cos \theta - i \sin \theta).

Simplify:

z+1z+2=(1cosθ)+isinθ.\frac{z + 1}{z + 2} = (1 - \cos \theta) + i \sin \theta.

The imaginary part is:

 Im(z+1z+2)=sinθ=15.\ Im \left( \frac{z + 1}{z + 2} \right) = \sin \theta = \frac{1}{5}.

Using sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:

cos2θ=1sin2θ=1(15)2=1125=2425.\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left( \frac{1}{5} \right)^2 = 1 - \frac{1}{25} = \frac{24}{25}.

cosθ=±2425=±265.\cos \theta = \pm \sqrt{\frac{24}{25}} = \pm \frac{2 \sqrt{6}}{5}.

Now, the real part of z+2z + 2 is:

 Re(z+2)=cosθ.\ Re(z + 2) = \cos \theta.

The magnitude of (z+2)\Re(z + 2) is:

 Re(z+2)=265.|\ Re(z + 2)| = \frac{2 \sqrt{6}}{5}.

Final Answer: 265\frac{2 \sqrt{6}}{5}.