Solveeit Logo

Question

Mathematics Question on complex numbers

Let zz be a complex number such that the real part of z2iz+2i\frac{z - 2i}{z + 2i} is zero. Then, the maximum value of z(6+8i)|z - (6 + 8i)| is equal to:

A

12

B

\infty

C

10

D

8

Answer

12

Explanation

Solution

Given the expression:

z2iz+2i+z+2iz2i=0,\frac{z - 2i}{z + 2i} + \frac{\overline{z} + 2i}{\overline{z} - 2i} = 0,

we proceed by simplifying each term. Expanding and multiplying, we obtain:

zz2iz2iz+4(1)+zz+2zi+2zi+4(1)=0.z\overline{z} - 2i\overline{z} - 2iz + 4(-1) + \overline{z}z + 2zi + 2z\overline{i} + 4(-1) = 0.

Combining terms, we get:

2z2=8    z=2.2|z|^2 = 8 \implies |z| = 2.

Now, we find the maximum value of z(6+8i)|z - (6 + 8i)|:

z(6+8i)maximum=10+2=12.|z - (6 + 8i)|_{\text{maximum}} = 10 + 2 = 12.