Solveeit Logo

Question

Question: Let `z₁` and `z₂` be any two distinct complex number which satisfy $z_{1}^{20} = 1$. 3. The probabi...

Let z₁ and z₂ be any two distinct complex number which satisfy z120=1z_{1}^{20} = 1.

  1. The probability that z1z25+12|z₁ - z₂| \ge \frac{\sqrt{5} + 1}{2} is pq\frac{p}{q} (where p and q are co-prime) then the value of q - 2p is :

  2. The number of possible ordered pair (z1,z2)(z₁, z₂) such that z1z223|z₁ - z₂| \le \sqrt{2 - \sqrt{3}}

Answer

1

Explanation

Solution

Let zz be a complex number satisfying z20=1z^{20} = 1. The solutions are the 20th roots of unity, given by zk=ei2πk20=eiπk10z_k = e^{i \frac{2\pi k}{20}} = e^{i \frac{\pi k}{10}} for k=0,1,,19k = 0, 1, \dots, 19. These roots are points on the unit circle in the complex plane.

Problem 3: Probability that z1z25+12|z_1 - z_2| \ge \frac{\sqrt{5} + 1}{2}.

z1z_1 and z2z_2 are distinct roots of z20=1z^{20}=1. The total number of distinct unordered pairs {z1,z2}\{z_1, z_2\} is (202)=20×192=190\binom{20}{2} = \frac{20 \times 19}{2} = 190. This is our sample space size.

Let zj=ei2πj20z_j = e^{i \frac{2\pi j}{20}} and zk=ei2πk20z_k = e^{i \frac{2\pi k}{20}} be two distinct roots, j,k{0,1,,19}j, k \in \{0, 1, \dots, 19\}, jkj \ne k. The distance between zjz_j and zkz_k is given by zjzk|z_j - z_k|. zjzk=ei2πj20ei2πk20=eiπ(j+k)20(eiπ(jk)20eiπ(jk)20)=eiπ(j+k)202isin(π(jk)20)=2sin(π(jk)20)|z_j - z_k| = |e^{i \frac{2\pi j}{20}} - e^{i \frac{2\pi k}{20}}| = |e^{i \frac{\pi (j+k)}{20}} (e^{i \frac{\pi (j-k)}{20}} - e^{-i \frac{\pi (j-k)}{20}})| = |e^{i \frac{\pi (j+k)}{20}}| |2i \sin(\frac{\pi (j-k)}{20})| = 2 |\sin(\frac{\pi (j-k)}{20})|. Since the roots are on the unit circle, the distance between two roots depends only on the angular separation between them. The angular separation is 2π(kj)20\frac{2\pi (k-j)}{20}. The distance is 2sin(πkj20)2 \sin(\frac{\pi |k-j|}{20}). Due to symmetry on the circle, the distance depends on the shorter arc between the two points. Let d=kjd = |k-j|. The relevant difference is m=min(d(mod20),20(d(mod20)))m = \min(d \pmod{20}, 20 - (d \pmod{20})). mm represents the number of steps (of size 2π/202\pi/20) along the shorter arc on the circle. mm can take values 1,2,,101, 2, \dots, 10. The distance is 2sin(πm20)2 \sin(\frac{\pi m}{20}).

We need to find the pairs {z1,z2}\{z_1, z_2\} such that 2sin(πm20)5+122 \sin(\frac{\pi m}{20}) \ge \frac{\sqrt{5} + 1}{2}. This is equivalent to sin(πm20)5+14\sin(\frac{\pi m}{20}) \ge \frac{\sqrt{5} + 1}{4}. We know that cos(π5)=cos(36)=5+14\cos(\frac{\pi}{5}) = \cos(36^\circ) = \frac{\sqrt{5}+1}{4}. Also, cos(θ)=sin(π2θ)\cos(\theta) = \sin(\frac{\pi}{2} - \theta). So sin(3π10)=sin(π2π5)=5+14\sin(\frac{3\pi}{10}) = \sin(\frac{\pi}{2} - \frac{\pi}{5}) = \frac{\sqrt{5}+1}{4}. 3π10=6π20\frac{3\pi}{10} = \frac{6\pi}{20}. So the condition is sin(πm20)sin(6π20)\sin(\frac{\pi m}{20}) \ge \sin(\frac{6\pi}{20}). Since m{1,2,,10}m \in \{1, 2, \dots, 10\}, the angle πm20\frac{\pi m}{20} is in the range (0,π/2](0, \pi/2]. In this range, the sine function is increasing. Thus, the inequality is equivalent to πm206π20\frac{\pi m}{20} \ge \frac{6\pi}{20}, which means m6m \ge 6. The possible values for mm are 6,7,8,9,106, 7, 8, 9, 10.

For a given value of m{1,2,,9}m \in \{1, 2, \dots, 9\}, there are 20 unordered pairs {zj,zk}\{z_j, z_k\} such that the minimum index difference is mm. These are pairs {zj,zj+m}\{z_j, z_{j+m}\} for j=0,,19j=0, \dots, 19 (indices mod 20). For m{1,,9}m \in \{1, \dots, 9\}, m20mm \ne 20-m, so {zj,zj+m}\{z_j, z_{j+m}\} and {zj,zjm}\{z_j, z_{j-m}\} represent the same set of 20 pairs due to symmetry. For m=10m=10, m=20mm = 20-m. The pairs {zj,zj+10}\{z_j, z_{j+10}\} are diametrically opposite points. There are 10 such unordered pairs: {z0,z10},{z1,z11},,{z9,z19}\{z_0, z_{10}\}, \{z_1, z_{11}\}, \dots, \{z_9, z_{19}\}.

The values of mm satisfying m6m \ge 6 are m=6,7,8,9,10m=6, 7, 8, 9, 10. Number of favourable pairs: For m=6m=6: 20 pairs. Distance 2sin(6π/20)=(5+1)/22 \sin(6\pi/20) = (\sqrt{5}+1)/2. For m=7m=7: 20 pairs. Distance 2sin(7π/20)>(5+1)/22 \sin(7\pi/20) > (\sqrt{5}+1)/2. For m=8m=8: 20 pairs. Distance 2sin(8π/20)>(5+1)/22 \sin(8\pi/20) > (\sqrt{5}+1)/2. For m=9m=9: 20 pairs. Distance 2sin(9π/20)>(5+1)/22 \sin(9\pi/20) > (\sqrt{5}+1)/2. For m=10m=10: 10 pairs. Distance 2sin(10π/20)=22 \sin(10\pi/20) = 2.

Total number of favourable pairs = 20+20+20+20+10=9020 + 20 + 20 + 20 + 10 = 90. Total number of distinct unordered pairs = 190. The probability is 90190=919\frac{90}{190} = \frac{9}{19}. This is given as pq\frac{p}{q} where pp and qq are co-prime. p=9p=9, q=19q=19. They are co-prime. We need to find the value of q2pq - 2p. q2p=192(9)=1918=1q - 2p = 19 - 2(9) = 19 - 18 = 1.

Problem 4: The number of possible ordered pairs (z1,z2)(z_1, z_2) such that z1z223|z_1 - z_2| \le \sqrt{2 - \sqrt{3}}.

z1z_1 and z2z_2 are distinct roots of z20=1z^{20}=1. The total number of distinct ordered pairs (z1,z2)(z_1, z_2) is 20×19=38020 \times 19 = 380.

The condition is z1z223|z_1 - z_2| \le \sqrt{2 - \sqrt{3}}. We know z1z2=2sin(πm20)|z_1 - z_2| = 2 \sin(\frac{\pi m}{20}), where m=min(kj(mod20),20kj(mod20))m = \min(|k-j| \pmod{20}, 20-|k-j| \pmod{20}) for z1=zjz_1=z_j and z2=zkz_2=z_k. m{1,2,,10}m \in \{1, 2, \dots, 10\}. We need 2sin(πm20)232 \sin(\frac{\pi m}{20}) \le \sqrt{2 - \sqrt{3}}. Let's evaluate 23\sqrt{2 - \sqrt{3}}. 23=4232=(31)22=312=622\sqrt{2 - \sqrt{3}} = \sqrt{\frac{4 - 2\sqrt{3}}{2}} = \frac{\sqrt{(\sqrt{3}-1)^2}}{\sqrt{2}} = \frac{\sqrt{3}-1}{\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{2}. We know sin(π12)=sin(15)=624\sin(\frac{\pi}{12}) = \sin(15^\circ) = \frac{\sqrt{6}-\sqrt{2}}{4}. So 23=2sin(π12)\sqrt{2 - \sqrt{3}} = 2 \sin(\frac{\pi}{12}). π12=20π240=π×(20/12)20=π×5/320\frac{\pi}{12} = \frac{20\pi}{240} = \frac{\pi \times (20/12)}{20} = \frac{\pi \times 5/3}{20}. This is not directly in the form πm20\frac{\pi m}{20}. Let's express π12\frac{\pi}{12} in terms of π20\frac{\pi}{20}. π12=5π60=5π×3180=5π12\frac{\pi}{12} = \frac{5\pi}{60} = \frac{5\pi \times 3}{180} = \frac{5\pi}{12}. π12=20π/1220=5π/320\frac{\pi}{12} = \frac{20\pi/12}{20} = \frac{5\pi/3}{20}. The condition is 2sin(πm20)2sin(π12)2 \sin(\frac{\pi m}{20}) \le 2 \sin(\frac{\pi}{12}). sin(πm20)sin(π12)\sin(\frac{\pi m}{20}) \le \sin(\frac{\pi}{12}). π12=15\frac{\pi}{12} = 15^\circ. The angles πm20\frac{\pi m}{20} for m=1,,10m=1, \dots, 10 are π20=9,2π20=18,,10π20=90\frac{\pi}{20}=9^\circ, \frac{2\pi}{20}=18^\circ, \dots, \frac{10\pi}{20}=90^\circ. Since πm20\frac{\pi m}{20} is in (0,π/2](0, \pi/2] for m{1,,10}m \in \{1, \dots, 10\}, the inequality sin(πm20)sin(π12)\sin(\frac{\pi m}{20}) \le \sin(\frac{\pi}{12}) is equivalent to πm20π12\frac{\pi m}{20} \le \frac{\pi}{12}. m/201/12    m20/12=5/3m/20 \le 1/12 \implies m \le 20/12 = 5/3. Since mm must be an integer, the possible values for mm are m=1m=1. The condition z1z223|z_1 - z_2| \le \sqrt{2 - \sqrt{3}} is satisfied if and only if m=1m=1. The minimum index difference between z1z_1 and z2z_2 must be 1. This means z1z_1 and z2z_2 must be adjacent roots on the unit circle. The pairs of adjacent roots are (z0,z1),(z1,z2),,(z19,z0)(z_0, z_1), (z_1, z_2), \dots, (z_{19}, z_0). There are 20 such ordered pairs. Also, (z1,z0),(z2,z1),,(z0,z19)(z_1, z_0), (z_2, z_1), \dots, (z_0, z_{19}) are ordered pairs of adjacent roots. There are 20 such ordered pairs. The minimum index difference m=1m=1 corresponds to pairs (zj,zj+1)(z_j, z_{j+1}) or (zj,zj1)(z_j, z_{j-1}) (indices mod 20). The ordered pairs (z1,z2)(z_1, z_2) with minimum index difference 1 are (zj,zj+1)(z_j, z_{j+1}) for j=0,,19j=0, \dots, 19 and (zj+1,zj)(z_{j+1}, z_j) for j=0,,19j=0, \dots, 19. There are 20 pairs of the form (zj,zj+1)(z_j, z_{j+1}) and 20 pairs of the form (zj+1,zj)(z_{j+1}, z_j). Total number of ordered pairs (z1,z2)(z_1, z_2) such that z1z2=2sin(π/20)|z_1 - z_2| = 2 \sin(\pi/20) (which is the distance for m=1m=1) is 20+20=4020+20=40. Since m=1m=1 is the only value that satisfies the condition, the number of possible ordered pairs (z1,z2)(z_1, z_2) is 40.

The final answer is 1\boxed{1}.