Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z and w be two complex numbers such that z1,w1|z| \le 1, |w | \le 1 and z+iw=ziw=2|z + i w |= | z - \overline {iw}| = 2 , then z equals

A

1 or i

B

i or -i

C

1 or -1

D

i or -1

Answer

1 or -1

Explanation

Solution

Given, ziw=ziw=2|ziw|=|z- \overline {iw|}| = 2 z(iw)z(iw)=2\Rightarrow \, \, \, \, |z-(-iw)|z-(\overline {iw|})=2 z(iw)=z(iw)\Rightarrow \, \, \, \, |z-(-iw)|=|z-(-\overline {iw)|} \therefore z lies on the perpendicular bisector of the line joining - iw and iw-\overline {iw|}. Since,iw-\overline {iw|} is the mirror image of - iw in the X-axis, the locus of z is the X-axis. Let z = x + i y and y = 0. Now, z1x2+0211x1\, \, \, \, \, \, \, \, |z|\le 1 \, \Rightarrow \, \, x^2+0^2 \le 1\, \Rightarrow \, \, -1 \le \, x \, \le \, 1 \therefore 2 may take values given in option (c). Alternate Solution z+iwz+iw\, \, \, \, \, \, \, \, \, \, \, \, |z+iw|\le |z|+|iw| =z+w\, \, \, \, \, \, \, \, \, \, \, \, =|z|+|w| 1+1=2\, \, \, \, \, \, \, \, \, \, \, \, \le 1+1=2 z+iw2\therefore \, \, \, \, \, \, \, \, \, \, \, |z+iw|\le 2 z+iw=2\Rightarrow \, \, \, \, \, \, \, \, \, \, |z+iw|= 2 holds when \, \, \, \, \, \, \, \, \, arg z - arg iw = 0 argziw=0\Rightarrow \, \, \, \, arg\frac{z}{iw}=0 ziw\Rightarrow \, \, \frac{z}{i w} is purely real. zw\Rightarrow \, \, \frac{z}{w} is purely imaginary. Similarly, when ziw=2,thenzwis| z - i \overline{w}|=2 , \, then \frac{z}{\overline{w}}is purely imaginary Now, given relation z+iw=ziw=2|z+iw|=|z-i\overline{w}|=2 Put w = t, we get z+i2=z+i2=2 \, \, \, \, \, \, \, \, \, \, \, \, \, |z+i^2|=|z+i^2|=2 z1=1\Rightarrow \, \, \, \, \, \, \, |z-1|=1 z=1[z1]\Rightarrow \, \, \, \, z=-1 \, \, \, \, \, [\because |z| \le 1] Put w = - i , we get zi2=zi2=1\, \, \, \, \, \, \, \, \, \, \, |z-i^2|=|z-i^2|=1 z+1=1\Rightarrow \, \, \, \, \, \, \, |z+1|=1 z=1[z1]\Rightarrow \, \, \, \, z=1 \, \, \, \, \, [\because |z| \le 1] \therefore 2 = 1 or - 1 is the correct option.