Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let z and w be two complex numbers such that ∣z∣≤1,∣w∣≤1 and ∣z+iw∣=∣z−iw∣=2 , then z equals
1 or i
i or -i
1 or -1
i or -1
1 or -1
Solution
Given, ∣ziw∣=∣z−iw∣∣=2 ⇒∣z−(−iw)∣z−(iw∣)=2 ⇒∣z−(−iw)∣=∣z−(−iw)∣ ∴ z lies on the perpendicular bisector of the line joining - iw and −iw∣. Since,−iw∣ is the mirror image of - iw in the X-axis, the locus of z is the X-axis. Let z = x + i y and y = 0. Now, ∣z∣≤1⇒x2+02≤1⇒−1≤x≤1 ∴ 2 may take values given in option (c). Alternate Solution ∣z+iw∣≤∣z∣+∣iw∣ =∣z∣+∣w∣ ≤1+1=2 ∴∣z+iw∣≤2 ⇒∣z+iw∣=2 holds when arg z - arg iw = 0 ⇒argiwz=0 ⇒iwz is purely real. ⇒wz is purely imaginary. Similarly, when ∣z−iw∣=2,thenwzis purely imaginary Now, given relation ∣z+iw∣=∣z−iw∣=2 Put w = t, we get ∣z+i2∣=∣z+i2∣=2 ⇒∣z−1∣=1 ⇒z=−1[∵∣z∣≤1] Put w = - i , we get ∣z−i2∣=∣z−i2∣=1 ⇒∣z+1∣=1 ⇒z=1[∵∣z∣≤1] ∴ 2 = 1 or - 1 is the correct option.