Question
Mathematics Question on complex numbers
Let z = a + ib , b ≠ 0 be complex numbers satisfying
z2=z⋅21−∣z∣.
Then the least value of n ∈ N , such that z n= (z + 1)n , is equal to _____.
Answer
z2=z⋅21−∣z∣⋯(1)
⇒ ∣z∣2=∣z∣⋅21−∣z∣
⇒ ∣z∣=21−∣z∣,∵ b=0⇒∣z∣=0
∴ |z | = 1 …(2)
∵z=a+ib then a2+b2=1⋯(3)
Now again from equation (1), equation (2), equation (3) we get :
a 2 – b 2 + i 2 ab = (a – ib) 20
∴ a 2 – b 2 =a and 2 ab = – b
∴ a=−21 and b=±23
∴ z=−21+23i or z=−21−23i
zn=(z+1)n⇒(zz+1)n=1
(1+z1)n=1
(21+3i)n=1
So, Minimum value of n is 6.