Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let z1 and z2 be two distinct complex numbers and let z=(1−t)z1+tz2 for some real number t with 0<t<1. If arg(w) denotes the principal argument of a non-zero complex num ber w, then
∣z−z1∣+∣z−z2∣=∣z1−z2∣
arg(z-z2) = arg(z-z2)
z−z1 z2−z1z−z1z2−z1=0
arg(z-z1)=arg(z2−z1)
arg(z-z1)=arg(z2−z1)
Solution
Given , z=(1−t)+t(1−t)z1+tz2 Clearly, 2 divides z1and z2 in the ratio of t : (1 - 1), 0 < t < 1 ⇒ AP+BP+AB i.e.,∣z−z1∣+∣z−z2∣=∣z1−z2∣ ⇒ Option (a) is true. and a rg (z - z1) =arg(z2-z ) =arg(z2- z1) ⇒ Option (b) is false and option (d) is true. Also, arg(z-z1)=arg(z2−z)=arg(z2−z1) → arg(z2−z1z−z1)=0 ∴z2−z1z−z1 is purely real. ⇒ z2−z1z−z1=z2−z1z−z1 or z−z1 z2−z1z−z1z2−z1=0 ∴ Option (c) is correct. Hence, (a, c, d) is the correct option.