Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z1z_1 and z2z_2 be two distinct complex numbers and let z=(1t)z1+tz2z = (1 - t) z_1 + tz_2 for some real number t with 0<t<10 < t < 1. If arg(w)arg (w) denotes the principal argument of a non-zero complex num ber w, then

A

zz1+zz2=z1z2|z-z_1|+|z-z_2|=|z_1-z_2|

B

arg(z-z2)z_2) = arg(z-z2)z_2)

C

zz1zz1 z2z1z2z1=0\begin {vmatrix} z-z_1 & \overline{z}-\overline{z_1} \\\ z_2-z_1 & \overline{z_2}-\overline{z_1} \end {vmatrix} =0

D

arg(z-z1)=arg(z2z1)z_1)=arg(z_2-z_1)

Answer

arg(z-z1)=arg(z2z1)z_1)=arg(z_2-z_1)

Explanation

Solution

Given , z=(1t)z1+tz2(1t)+t\frac{(1-t)z_1+tz_2}{(1-t)+t} Clearly, 2 divides z1_1and z2_2 in the ratio of t : (1 - 1), 0 < t < 1    AP+BP+AB  i.e.,zz1+zz2=z1z2\Rightarrow \ \ \ AP+BP+AB \ \ i.e., |z-z_1|+|z-z_2|=|z_1-z_2|   \Rightarrow \ \ Option (a) is true. and a rg (z - z1z_1) =arg(z2z_2-z ) =arg(z2z_2- z1z_1) \Rightarrow Option (b) is false and option (d) is true. Also, arg(z-z1)=arg(z2z)=arg(z2z1)z_1)=arg(z_2-z)=arg(z_2-z_1)   arg(zz1z2z1)=0\rightarrow \ \ arg\bigg( \frac{z-z_1}{z_2-z_1}\bigg)=0 zz1z2z1\therefore \frac{z-z_1}{z_2-z_1} is purely real.   zz1z2z1=zz1z2z1\Rightarrow \ \ \frac{z-z_1}{z_2-z_1}=\frac{\overline{z}-\overline{z_1}}{\overline{z_2}-\overline{z_1}} or zz1zz1 z2z1z2z1=0\begin {vmatrix} z-z_1 & \overline{z}-\overline{z_1} \\\ z_2-z_1 & \overline{z_2}-\overline{z_1} \end {vmatrix}=0 \therefore Option (c) is correct. Hence, (a, c, d) is the correct option.