Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z1z_1 and z2z_2 be two complex numbers such that z1z2z_1\neq z_2 and z1z2|z_1|\neq| z_2| . If z1z_1 has a positive real part and z2z_2 has negative imaginary part, then z1+z2z1+z2\frac{z_1+z_2}{z_1+z_2} may be

A

zero or purely imaginary

B

real and positive

C

real and negative

D

none of these

Answer

real and negative

Explanation

Solution

Let z1=cosθ+isinθz_{1}=cos\,\theta+i\,sin\,\theta and z2=cosϕ+isinϕz_{2}=cos\,\phi+i\,sin\,\phi z1z2z1z2\therefore \frac{z_{1}-z_{2}}{z_{1}-z_{2}} =cosθ+isinθ+cosϕ+isinϕcosθ+isinθcosϕisinϕ=\frac{cos\,\theta+i\,sin\,\theta+cos\,\phi+i\,sin\,\phi}{cos\,\theta+i\,sin\,\theta-cos\,\phi-i\,sin\,\phi} =(cosθ++cosϕ)+i(sinθ+sinϕ)(cosθcosϕ)+i(sinθsinϕ)=\frac{\left(cos\,\theta+\,+cos\,\phi\right)+i\left(sin\,\theta+sin\,\phi\right)}{\left(cos\,\theta-cos\,\phi\right)+i\left(sin\,\theta-sin\,\phi\right)} =icotθϕ2=-i\,cot \frac{\theta-\phi}{2} which is purely imaginary if θϕ\theta \ne\phi and zero if θϕ2=π2\frac{\theta-\phi}{2}=\frac{\pi}{2} or θ=π+ϕ\theta=\pi+\phi