Solveeit Logo

Question

Mathematics Question on complex numbers

Let z1z_1 and z2z_2 be two complex numbers such that z1+z2=5z_1 + z_2 = 5 and z13+z23=20+15iz_1^3 + z_2^3 = 20 + 15i. Then z14+z24\left| z_1^4 + z_2^4 \right| equals

A

30330 \sqrt{3}

B

7575

C

151515 \sqrt{15}

D

25325 \sqrt{3}

Answer

7575

Explanation

Solution

Given:

z1+z2=5andz13+z23=20+15iz_1 + z_2 = 5 \quad \text{and} \quad z_1^3 + z_2^3 = 20 + 15i

Let S=z1+z2S = z_1 + z_2 and P=z1z2P = z_1 z_2. We know that:

S=5S = 5

Using the identity for the sum of cubes:

z13+z23=(z1+z2)(z12z1z2+z22)z_1^3 + z_2^3 = (z_1 + z_2)\left(z_1^2 - z_1 z_2 + z_2^2\right)

Since z12+z22=S22Pz_1^2 + z_2^2 = S^2 - 2P, we can write:

z13+z23=S(S23P)=20+15iz_1^3 + z_2^3 = S(S^2 - 3P) = 20 + 15i

Substitute S=5S = 5:

5(253P)=20+15i5(25 - 3P) = 20 + 15i

Solving for PP, we get:

12515P=20+15i125 - 15P = 20 + 15i 15P=10515i15P = 105 - 15i P=7iP = 7 - i

Now we need to find z14+z24z_1^4 + z_2^4. Using the identity:

z14+z24=(z12+z22)22(z1z2)2z_1^4 + z_2^4 = (z_1^2 + z_2^2)^2 - 2(z_1 z_2)^2

Since z12+z22=S22Pz_1^2 + z_2^2 = S^2 - 2P, we have:

z12+z22=522(7i)=2514+2i=11+2iz_1^2 + z_2^2 = 5^2 - 2(7 - i) = 25 - 14 + 2i = 11 + 2i

Now, square z12+z22z_1^2 + z_2^2:

(z12+z22)2=(11+2i)2=121+44i+4i2=121+44i4=117+44i(z_1^2 + z_2^2)^2 = (11 + 2i)^2 = 121 + 44i + 4i^2 = 121 + 44i - 4 = 117 + 44i

Next, calculate (z1z2)2(z_1 z_2)^2:

(z1z2)2=(7i)2=4914i+i2=4914i1=4814i(z_1 z_2)^2 = (7 - i)^2 = 49 - 14i + i^2 = 49 - 14i - 1 = 48 - 14i

Thus,

z14+z24=(117+44i)2(4814i)z_1^4 + z_2^4 = (117 + 44i) - 2(48 - 14i) =117+44i96+28i= 117 + 44i - 96 + 28i =21+72i= 21 + 72i

Finally, we find z14+z24|z_1^4 + z_2^4|:

z14+z24=212+722=441+5184=5625=75|z_1^4 + z_2^4| = \sqrt{21^2 + 72^2} = \sqrt{441 + 5184} = \sqrt{5625} = 75

The answer is: 75