Question
Mathematics Question on complex numbers
Let z1 and z2 be two complex numbers such that z1+z2=5 and z13+z23=20+15i. Then z14+z24 equals
303
75
1515
253
75
Solution
Given:
z1+z2=5andz13+z23=20+15i
Let S=z1+z2 and P=z1z2. We know that:
S=5
Using the identity for the sum of cubes:
z13+z23=(z1+z2)(z12−z1z2+z22)
Since z12+z22=S2−2P, we can write:
z13+z23=S(S2−3P)=20+15i
Substitute S=5:
5(25−3P)=20+15i
Solving for P, we get:
125−15P=20+15i 15P=105−15i P=7−i
Now we need to find z14+z24. Using the identity:
z14+z24=(z12+z22)2−2(z1z2)2
Since z12+z22=S2−2P, we have:
z12+z22=52−2(7−i)=25−14+2i=11+2i
Now, square z12+z22:
(z12+z22)2=(11+2i)2=121+44i+4i2=121+44i−4=117+44i
Next, calculate (z1z2)2:
(z1z2)2=(7−i)2=49−14i+i2=49−14i−1=48−14i
Thus,
z14+z24=(117+44i)−2(48−14i) =117+44i−96+28i =21+72i
Finally, we find ∣z14+z24∣:
∣z14+z24∣=212+722=441+5184=5625=75
The answer is: 75