Solveeit Logo

Question

Question: Let \({{z}_{1}}\) and \({{z}_{2}}\) be two complex numbers with \(\alpha ,\beta \) as their principa...

Let z1{{z}_{1}} and z2{{z}_{2}} be two complex numbers with α,β\alpha ,\beta as their principal arguments such that α+β>π\alpha +\beta >\pi , then principal arg(z1z2)\arg \left( {{z}_{1}}{{z}_{2}} \right) is given by
A. α+β+π\alpha +\beta +\pi
B. α+βπ\alpha +\beta -\pi
C. α+β2π\alpha +\beta -2\pi
D. α+β\alpha +\beta

Explanation

Solution

We explain the concept of argument for the complex number. Then we use the concept of range for argument and the theorem arg(z1z2)=arg(z1)+arg(z2)\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right) to find the arg(z1z2)\arg \left( {{z}_{1}}{{z}_{2}} \right). We deduct 2π2\pi from the argument if it crosses π\pi to keep it in the range.

Complete step by step answer:
We have z1{{z}_{1}} and z2{{z}_{2}} as two complex numbers with α,β\alpha ,\beta as their principal arguments.
We know that πα,βπ-\pi \le \alpha ,\beta \le \pi . This range is for the argument of any complex number.
We can express any arbitrary complex number as z=eiθz={{e}^{i\theta }}. Here θ\theta is the argument.
We denote z1=eiα{{z}_{1}}={{e}^{i\alpha }} and z2=eiβ{{z}_{2}}={{e}^{i\beta }}. We also know that arg(z1z2)=arg(z1)+arg(z2)\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right).
Therefore, putting the values we get arg(z1z2)=arg(z1)+arg(z2)=α+β\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)=\alpha +\beta .
It is given that α+β>π\alpha +\beta >\pi which gives arg(z1z2)>π\arg \left( {{z}_{1}}{{z}_{2}} \right)>\pi .
But as the principal argument has to be in the range of [π,π]\left[ -\pi ,\pi \right], we deduct 2π2\pi from the argument if it crosses π\pi to keep it in the range. We can deduct as the period of the trigonometric function is 2π2\pi .
Therefore, arg(z1z2)=arg(z1)+arg(z2)2π\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)-2\pi if arg(z1)+arg(z2)>π\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)>\pi .
So, principal arg(z1z2)\arg \left( {{z}_{1}}{{z}_{2}} \right) is given by α+β2π\alpha +\beta -2\pi .

So, the correct answer is “Option C”.

Note: The same thing can be done for condition of arg(z1)+arg(z2)<π\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi by adding 2π2\pi to the argument if it goes less than π-\pi to keep it in the range. The complex form can also be represented as z=eiθ=cosθ+isinθz={{e}^{i\theta }}=\cos \theta +i\sin \theta .