Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let z1{{z}_{1}} and z2{{z}_{2}} be the roots of the equation z2+pz+q=0{{z}^{2}}+pz+q=0 where p, q are real. The points represented by z1,z2{{z}_{1}},{{z}_{2}} and the origin form an equilateral triangle, if

A

p2=3q{{p}^{2}}=3q

B

p2>3q{{p}^{2}}>3q

C

p2<3q{{p}^{2}}<3q

D

p2=2q{{p}^{2}}=2q

Answer

p2=3q{{p}^{2}}=3q

Explanation

Solution

We have, z2+pz+q=0{{z}^{2}}+pz+q=0 and let p2=3q{{p}^{2}}=3q \Rightarrow z=p±p24q2=p±3q4q2z=\frac{-p\pm \sqrt{{{p}^{2}}-4q}}{2}=\frac{-p\pm \sqrt{3q-4q}}{2} =p±iq2=\frac{-p\pm i\sqrt{q}}{2} Let z1=p+iq2{{z}_{1}}=\frac{-p+i\sqrt{q}}{2} and z2=piq2{{z}_{2}}=\frac{-p-i\sqrt{q}}{2} Further, let z1{{z}_{1}} and z2{{z}_{2}} be the affixes of points A and B respectively. Then, OA=z1=(p2)2+(q2)2=p24+q4OA=|{{z}_{1}}|=\sqrt{{{\left( -\frac{p}{2} \right)}^{2}}+{{\left( \frac{\sqrt{q}}{2} \right)}^{2}}}=\sqrt{\frac{{{p}^{2}}}{4}+\frac{q}{4}} =3q4+q4=q=\sqrt{\frac{3q}{4}+\frac{q}{4}}=\sqrt{q} OB=z2=(p2)2+(q2)2=p24+q4OB=|{{z}_{2}}|=\sqrt{{{\left( -\frac{p}{2} \right)}^{2}}+{{\left( -\frac{\sqrt{q}}{2} \right)}^{2}}}=\sqrt{\frac{{{p}^{2}}}{4}+\frac{q}{4}} =3q4+q4=q=\sqrt{\frac{3q}{4}+\frac{q}{4}}=\sqrt{q} and AB=z1z2=iq=0+(q)2AB=|{{z}_{1}}-{{z}_{2}}|=|i\sqrt{q}|=\sqrt{0+{{(\sqrt{q})}^{2}}} =q=\sqrt{q} \therefore OA=OB=ABOA=OB=AB \Rightarrow ΔAOB\Delta AOB is an equilateral triangle. Thus, p2=3q{{p}^{2}}=3q .