Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z1z_1 and z2z_2 be nth roots of unity which subtend a right angled at the origin, then n must be of the form (where, k is an integer)

A

4k+1

B

4k+2

C

4k+3

D

4k

Answer

4k

Explanation

Solution

Since, arg z1z2=π2\frac{z_1}{z_2}=\frac{\pi}{2}
z1z2=cosπ2+isinπ2=i\Rightarrow \, \, \frac{z_1}{z_2}=cos\frac{\pi}{2}+ i sin \frac{\pi}{2}=i
z1nz2n=(i)nin=1[z2=z1=1]\therefore \, \, \, \, \, \, \frac{z_1^n}{z_2^n}=(i)^n \, \Rightarrow i^n=1 \, \, \, \, \, \, \, \, \, \, \, \, \, [\because \, |z_2|=|z_1|=1]
n=4k\Rightarrow \, \, \, \, \, \, \, \, n=4k
Alternate Solution
Since,argz2z1=π2Since ,\, \, \, arg \frac{z_2}{z_1}=\frac{\pi}{2}
z2z1=z2z1eiπ2\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{z_2}{z_1}=\bigg|\frac{z_2}{z_1}\bigg|e^{i\frac{\pi}{2}}
z2z1=i[z1=z2=1]\Rightarrow \, \, \, \, \, \frac{z_2}{z_1}=i \, \, \, \, \, \, \, \, \, \, \, \, \, [\because \, |z_1|=|z_2|=1]
(z2z1)n=in\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \bigg(\frac{z_2}{z_1}\bigg)^n=i^n
z1andz2\therefore \, \, \, z_1 \, and \, \, z_2 are nth roots of unity
z1n=z2n=1(z2z1)n=1in=1z_1^n=z_2^n=1 \, \Rightarrow \, \, \bigg(\frac{z_2}{z_1}\bigg)^n =1 \, \, \, \Rightarrow \, \, i^n=1
\Rightarrow \, \, \, \, \, n=4k, where k is an integer.