Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let z1 and z2 be nth roots of unity which subtend a right angled at the origin, then n must be of the form (where, k is an integer)
A
4k+1
B
4k+2
C
4k+3
D
4k
Answer
4k
Explanation
Solution
Since, arg z2z1=2π
⇒z2z1=cos2π+isin2π=i
∴z2nz1n=(i)n⇒in=1[∵∣z2∣=∣z1∣=1]
⇒n=4k
Alternate Solution
Since,argz1z2=2π
∴z1z2=z1z2ei2π
⇒z1z2=i[∵∣z1∣=∣z2∣=1]
⇒(z1z2)n=in
∴z1andz2 are nth roots of unity
z1n=z2n=1⇒(z1z2)n=1⇒in=1
⇒ n=4k, where k is an integer.