Solveeit Logo

Question

Question: Let \({{z}_{1}}\) and \({{z}_{2}}\) be any two non-zero complex numbers such that \(3\left| {{z}_{1}...

Let z1{{z}_{1}} and z2{{z}_{2}} be any two non-zero complex numbers such that 3z1=4z23\left| {{z}_{1}} \right|=4\left| {{z}_{2}} \right|. If z=3z12z2+2z23z1z=\dfrac{3{{z}_{1}}}{2{{z}_{2}}}+\dfrac{2{{z}_{2}}}{3{{z}_{1}}} then?
A. z=172\left| z \right|=\sqrt{\dfrac{17}{2}}
B. Re(z)=0\operatorname{Re}(z)=0
C. z=52\left| z \right|=\sqrt{\dfrac{5}{2}}
D. Im(z)=0\operatorname{Im}(z)=0

Explanation

Solution

In order to solve this question we have to manipulate the given equation 3z1=4z23\left| {{z}_{1}} \right|=4\left| {{z}_{2}} \right|. From this equation get the value of 3z12z2=2\left| \dfrac{3{{z}_{1}}}{2{{z}_{2}}} \right|=2and after getting this as we know that from the Euler’s representation of a complex number, any complex number aa can be represented as aeiθ\left| a \right|{{e}^{i\theta }} or acosθ+iasinθ\left| a \right|\cos \theta +i\left| a \right|\sin \theta . Suppose that the x=3z12z2x=\dfrac{3{{z}_{1}}}{2{{z}_{2}}} then xxcan be written as 3z12z2eiθ\left| \dfrac{3{{z}_{1}}}{2{{z}_{2}}} \right|{{e}^{i\theta }}i.e. 2eiθ2{{e}^{i\theta }}. Now zz can be written as x+1xx+\dfrac{1}{x} and then evaluate the value of zz by putting x=2eiθx=2{{e}^{i\theta }} and then get the answer.

Complete step-by-step answer:
It is given that 3z1=4z23\left| {{z}_{1}} \right|=4\left| {{z}_{2}} \right|
Taking 2z22\left| {{z}_{2}} \right| in the LHS, we get
3z12z2=2\Rightarrow \dfrac{3\left| {{z}_{1}} \right|}{2\left| {{z}_{2}} \right|}=2
We can also write the above equation as 3z12z2=2\left| \dfrac{3{{z}_{1}}}{2{{z}_{2}}} \right|=2
Let us assume that x=3z12z2x=\dfrac{3{{z}_{1}}}{2{{z}_{2}}}.
Now as we know that from the Euler’s representation of a complex number, any complex number aa can be represented as aeiθ\left| a \right|{{e}^{i\theta }} or acosθ+iasinθ\left| a \right|\cos \theta +i\left| a \right|\sin \theta where θ\theta the argument of aa.
Hence, xxcan also be represented as x=3z12z2eiθ=2eiθx=\left| \dfrac{3{{z}_{1}}}{2{{z}_{2}}} \right|{{e}^{i\theta }}=2{{e}^{i\theta }}
Similarly 1x\dfrac{1}{x} can be represented as 1x=12eiθ=eiθ2\dfrac{1}{x}=\dfrac{1}{2{{e}^{i\theta }}}=\dfrac{{{e}^{-i\theta }}}{2}
Now it is given that z=3z12z2+2z23z1z=\dfrac{3{{z}_{1}}}{2{{z}_{2}}}+\dfrac{2{{z}_{2}}}{3{{z}_{1}}}, putting the value x=3z12z2x=\dfrac{3{{z}_{1}}}{2{{z}_{2}}} in this equation, we get
z=x+1x\Rightarrow z=x+\dfrac{1}{x}
Substituting the value of x=2eiθx=2{{e}^{i\theta }} and 1x=eiθ2\dfrac{1}{x}=\dfrac{{{e}^{-i\theta }}}{2} in the above equation, we get
z=2eiθ+eiθ2\Rightarrow z=2{{e}^{i\theta }}+\dfrac{{{e}^{-i\theta }}}{2}
Now we know that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta and eiθ=cosθisinθ{{e}^{-i\theta }}=\cos \theta -i\sin \theta , substituting both these in the above equation, we get
z=2(cosθ+isinθ)+12(cosθisinθ)\Rightarrow z=2\left( \cos \theta +i\sin \theta \right)+\dfrac{1}{2}\left( \cos \theta -i\sin \theta \right)
z=52cosθ+i32sinθ\Rightarrow z=\dfrac{5}{2}\cos \theta +i\dfrac{3}{2}\sin \theta
Hence, the value of zz is equal to 52cosθ+i32sinθ\dfrac{5}{2}\cos \theta +i\dfrac{3}{2}\sin \theta .
So, Re(z)=52cosθ0\operatorname{Re}\left( z \right)=\dfrac{5}{2}\cos \theta \ne 0 and Im(z)=32sinθ0\operatorname{Im}\left( z \right)=\dfrac{3}{2}\sin \theta \ne 0
Now, z=(52)2+(32)2=254+94=344=172\left| z \right|=\sqrt{{{\left( \dfrac{5}{2} \right)}^{2}}+{{\left( \dfrac{3}{2} \right)}^{2}}}=\sqrt{\dfrac{25}{4}+\dfrac{9}{4}}=\sqrt{\dfrac{34}{4}}=\sqrt{\dfrac{17}{2}}

So, the correct answer is “Option A”.

Note: This question is a typical example of Euler representation of a complex number. Students should note two things, first one is the given equation which is 3z1=4z23\left| {{z}_{1}} \right|=4\left| {{z}_{2}} \right|, we can rearrange it to get the modulus of the complex number 3z12z2\dfrac{3{{z}_{1}}}{2{{z}_{2}}}. Second thing to notice that zz is of the form x+1xx+\dfrac{1}{x} , so if we represent x=xeiθx=\left| x \right|{{e}^{i\theta }} then zz can be easily found as z=x+1x=xeiθ+eiθxz=x+\dfrac{1}{x}=\left| x \right|{{e}^{i\theta }}+\dfrac{{{e}^{-i\theta }}}{\left| x \right|}. Hence, as the modulus of xx is known so we represented it like that rather than assuming x=a+ibx=a+ib and hence made the calculation a lot easier.