Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let z=1+aiz = 1 + ai be a complex number, a>0a > 0, such that z3z^3 is a real number. Then the sum 1+z+z2+.....+z111 + z + z^2 +..... + z^{11} is equal to :

A

12503i- 1250 \, \sqrt{3} i

B

12503i1250 \, \sqrt{3} i

C

13653i1365 \, \sqrt{3} i

D

13653i- 1365 \, \sqrt{3} i

Answer

13653i- 1365 \, \sqrt{3} i

Explanation

Solution

The correct answer is D:13653i-1365\sqrt{3}i
Given that;
z=1+ai,z=1+a i,
a>0a > 0
z3=13a2+(3aa3)iz^{3}=1-3 a^{2}+\left(3 a-a^{3}\right) i is a real number
3aa3=0\Rightarrow 3 a-a^{3}=0
a2=3\Rightarrow a^{2}=3
a=3,\Rightarrow a=\sqrt{3},
a>0a > 0
Then 1+z+z2+......z4=z121z11+z+z^2+......z^4=\frac{z^{12}-1}{z-1}
=(1+3)121(1+3i)1=\frac{(1+\sqrt{3})^{12}-1}{(1+\sqrt{3}i)-1}
z=1+3i\Rightarrow z=1+\sqrt{3} i
=2(cosπ3+isinπ3)=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
Now 1+z+z2++z11=1(1z12)1z=1212(cos4π+isin4π)1(1+i3)1+z+z^{2}+\ldots \ldots+z^{11}=\frac{1\left(1-z^{12}\right)}{1-z}=\frac{1-2^{12}(\cos 4 \pi+i \sin 4 \pi)}{1-(1+i \sqrt{3})}
=1212i3=4095i3=13653i=\frac{1-2^{12}}{-i \sqrt{3}}=\frac{4095}{i \sqrt{3}}=-1365 \,\sqrt{3} i
real
real