Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let z=1+ai be a complex number, a>0, such that z3 is a real number. Then the sum 1+z+z2+.....+z11 is equal to :
A
−12503i
B
12503i
C
13653i
D
−13653i
Answer
−13653i
Explanation
Solution
The correct answer is D:−13653i
Given that;
z=1+ai,
a>0
z3=1−3a2+(3a−a3)i is a real number
⇒3a−a3=0
⇒a2=3
⇒a=3,
a>0
Then 1+z+z2+......z4=z−1z12−1
=(1+3i)−1(1+3)12−1
⇒z=1+3i
=2(cos3π+isin3π)
Now 1+z+z2+……+z11=1−z1(1−z12)=1−(1+i3)1−212(cos4π+isin4π)
=−i31−212=i34095=−13653i