Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Letz1=2i,z2=2+i.Find(i)Re(z1z2z1),(ii)Im(1z1z1)Let\, z_1=2 – i,z_2 = –2+i.\, Find\, (i) Re(\frac{z_1z_2}{z_1}), (ii) \,Im(\frac{1}{z_1z_1})

Answer

z!=2i,z@=2+iz_!=2-i,z_@=-2+i

(i)z1z2=(2i)(2+i)=4+2i+2ii2=4+4i(1)=3+4i(i)z_1z_2=(2-i)(-2+i)=-4+2i+2i-i^2=-4+4i-(-1)=-3+4i

z1ˉ=2+1\bar{z_1}=2+1

z1z2z1=3+4i2+i∴\frac{z_1z_2}{z_1}=\frac{-3+4i}{2+i}

On multiplying numerator and denominator by (2i), we obtain

z1z2z1=(3+4i)(2i)(2+i)(2i)=6+3i+8i4i222+12=6+1li4(1)22+12\frac{z_1z_2}{z_1}=\frac{(-3+4i)(2-i)}{(2+i)(2-i)}=\frac{-6+3i+8i-4i^2}{2^2+1^2}=\frac{-6+1li-4(-1)}{2^2+1^2}

=2+1li5=25+115i=\frac{-2+1\,li}{5}=\frac{-2}{5}+\frac{11}{5}i

On comparing real parts, we obtain

Re(z1z2z1ˉ)=25Re(\frac{z_1z_2}{\bar{z_1}})=\frac{-2}{5}

(ii) 1z1z1ˉ=1(2i)(2+i)=1(2)2+(1)2=15\frac{1}{z_1\bar{z_1}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^2+(1)^2}=\frac{1}{5}

On comparing imaginary parts, we obtain

Im(1z1z1ˉ)=0Im(\frac{1}{z_1\bar{z_1}})=0