Question
Mathematics Question on Complex Numbers and Quadratic Equations
Letz1=2–i,z2=–2+i.Find(i)Re(z1z1z2),(ii)Im(z1z11)
Answer
z!=2−i,z@=−2+i
(i)z1z2=(2−i)(−2+i)=−4+2i+2i−i2=−4+4i−(−1)=−3+4i
z1ˉ=2+1
∴z1z1z2=2+i−3+4i
On multiplying numerator and denominator by (2i), we obtain
z1z1z2=(2+i)(2−i)(−3+4i)(2−i)=22+12−6+3i+8i−4i2=22+12−6+1li−4(−1)
=5−2+1li=5−2+511i
On comparing real parts, we obtain
Re(z1ˉz1z2)=5−2
(ii) z1z1ˉ1=(2−i)(2+i)1=(2)2+(1)21=51
On comparing imaginary parts, we obtain
Im(z1z1ˉ1)=0