Solveeit Logo

Question

Question: Let $y=y(x)$ satisfy the differential equation $(2xy+x^2y+\frac{y^3}{3})dx+(x^2+y^2)dy=0$. If $y(1)=...

Let y=y(x)y=y(x) satisfy the differential equation (2xy+x2y+y33)dx+(x2+y2)dy=0(2xy+x^2y+\frac{y^3}{3})dx+(x^2+y^2)dy=0. If y(1)=1y(1)=1 and the value of (y(0))3=ke(kN)(y(0))^3=ke (k \in N). Find kk.

Answer

4

Explanation

Solution

The given differential equation is (2xy+x2y+y33)dx+(x2+y2)dy=0(2xy+x^2y+\frac{y^3}{3})dx+(x^2+y^2)dy=0.

This is a first-order differential equation of the form M(x,y)dx+N(x,y)dy=0M(x,y)dx + N(x,y)dy = 0, where M(x,y)=2xy+x2y+y33M(x,y) = 2xy+x^2y+\frac{y^3}{3} and N(x,y)=x2+y2N(x,y) = x^2+y^2.

First, we check if the equation is exact by comparing the partial derivatives: My=y(2xy+x2y+y33)=2x+x2+y2\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2xy+x^2y+\frac{y^3}{3}) = 2x+x^2+y^2. Nx=x(x2+y2)=2x\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x^2+y^2) = 2x.

Since MyNx\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}, the equation is not exact.

Next, we look for an integrating factor. Consider the expression 1N(MyNx)\frac{1}{N}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}): 1x2+y2((2x+x2+y2)2x)=x2+y2x2+y2=1\frac{1}{x^2+y^2}((2x+x^2+y^2) - 2x) = \frac{x^2+y^2}{x^2+y^2} = 1. Since this expression is a function of xx only, an integrating factor μ(x)\mu(x) exists and is given by e1dx=exe^{\int 1 dx} = e^x.

Multiply the given differential equation by the integrating factor exe^x: ex(2xy+x2y+y33)dx+ex(x2+y2)dy=0e^x(2xy+x^2y+\frac{y^3}{3})dx+e^x(x^2+y^2)dy=0. Let the new coefficients be M(x,y)=ex(2xy+x2y+y33)M'(x,y) = e^x(2xy+x^2y+\frac{y^3}{3}) and N(x,y)=ex(x2+y2)N'(x,y) = e^x(x^2+y^2). We verify that this new equation is exact: My=y[ex(2xy+x2y+y33)]=ex(2x+x2+y2)\frac{\partial M'}{\partial y} = \frac{\partial}{\partial y}[e^x(2xy+x^2y+\frac{y^3}{3})] = e^x(2x+x^2+y^2). Nx=x[ex(x2+y2)]=ex(x2+y2)+ex(2x)=ex(x2+2x+y2)\frac{\partial N'}{\partial x} = \frac{\partial}{\partial x}[e^x(x^2+y^2)] = e^x(x^2+y^2) + e^x(2x) = e^x(x^2+2x+y^2). Since My=Nx\frac{\partial M'}{\partial y} = \frac{\partial N'}{\partial x}, the equation is exact.

Now we find the potential function F(x,y)F(x,y) such that dF=Mdx+NdydF = M'dx + N'dy. We have Fy=N(x,y)=ex(x2+y2)\frac{\partial F}{\partial y} = N'(x,y) = e^x(x^2+y^2). Integrate with respect to yy (treating xx as a constant): F(x,y)=ex(x2+y2)dy=ex(x2+y2)dy=ex(x2y+y33)+h(x)F(x,y) = \int e^x(x^2+y^2) dy = e^x \int (x^2+y^2) dy = e^x (x^2y + \frac{y^3}{3}) + h(x), where h(x)h(x) is an arbitrary function of xx.

Now, differentiate F(x,y)F(x,y) with respect to xx and set it equal to M(x,y)M'(x,y): Fx=x[ex(x2y+y33)+h(x)]=ex(x2y+y33)+ex(2xy)+h(x)\frac{\partial F}{\partial x} = \frac{\partial}{\partial x}[e^x (x^2y + \frac{y^3}{3}) + h(x)] = e^x (x^2y + \frac{y^3}{3}) + e^x (2xy) + h'(x). We are given M(x,y)=ex(2xy+x2y+y33)M'(x,y) = e^x(2xy+x^2y+\frac{y^3}{3}). So, ex(x2y+y33)+ex(2xy)+h(x)=ex(2xy+x2y+y33)e^x (x^2y + \frac{y^3}{3}) + e^x (2xy) + h'(x) = e^x(2xy+x^2y+\frac{y^3}{3}). exx2y+exy33+ex2xy+h(x)=ex2xy+exx2y+exy33e^x x^2y + e^x \frac{y^3}{3} + e^x 2xy + h'(x) = e^x 2xy + e^x x^2y + e^x \frac{y^3}{3}. This simplifies to h(x)=0h'(x) = 0. Integrating with respect to xx, we get h(x)=C0h(x) = C_0, where C0C_0 is a constant.

The general solution is F(x,y)=C1F(x,y) = C_1, where C1C_1 is a constant. ex(x2y+y33)+C0=C1e^x (x^2y + \frac{y^3}{3}) + C_0 = C_1. Let C=C1C0C = C_1 - C_0. The general solution is ex(x2y+y33)=Ce^x (x^2y + \frac{y^3}{3}) = C.

We are given the initial condition y(1)=1y(1)=1. Substitute x=1x=1 and y=1y=1 into the general solution: e1(121+133)=Ce^1 (1^2 \cdot 1 + \frac{1^3}{3}) = C. e(1+13)=Ce (1 + \frac{1}{3}) = C. e(43)=Ce (\frac{4}{3}) = C. C=4e3C = \frac{4e}{3}.

The particular solution is ex(x2y+y33)=4e3e^x (x^2y + \frac{y^3}{3}) = \frac{4e}{3}.

We need to find the value of (y(0))3(y(0))^3. Let y0=y(0)y_0 = y(0) be the value of yy when x=0x=0. Substitute x=0x=0 into the particular solution: e0(02y0+y033)=4e3e^0 (0^2 \cdot y_0 + \frac{y_0^3}{3}) = \frac{4e}{3}. 1(0+y033)=4e31 (0 + \frac{y_0^3}{3}) = \frac{4e}{3}. y033=4e3\frac{y_0^3}{3} = \frac{4e}{3}. y03=4ey_0^3 = 4e.

So, (y(0))3=4e(y(0))^3 = 4e. We are given that (y(0))3=ke(y(0))^3 = ke, where kNk \in N. Comparing 4e4e with keke, we have ke=4eke = 4e. Since e0e \neq 0, we can divide by ee to get k=4k=4. The value k=4k=4 is a natural number.