Solveeit Logo

Question

Question: Let $y=f(x)$ be a differentiable function satisfying $\int_2^x f(t) dt + 2 = \frac{x^2}{2} + \int_x^...

Let y=f(x)y=f(x) be a differentiable function satisfying 2xf(t)dt+2=x22+x2t2f(t)dt\int_2^x f(t) dt + 2 = \frac{x^2}{2} + \int_x^2 t^2 f(t) dt then \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)+x^9-x^3+x+1}{\cos^2 x} dx = \text{_______}.

Answer

2

Explanation

Solution

  1. Find f(x)f(x): The given equation is 2xf(t)dt+2=x22+x2t2f(t)dt\int_2^x f(t) dt + 2 = \frac{x^2}{2} + \int_x^2 t^2 f(t) dt. Rewrite the equation as 2xf(t)dt+2xt2f(t)dt=x222\int_2^x f(t) dt + \int_2^x t^2 f(t) dt = \frac{x^2}{2} - 2. Differentiate both sides with respect to xx using the Fundamental Theorem of Calculus: f(x)+x2f(x)=xf(x) + x^2 f(x) = x. (1+x2)f(x)=x(1+x^2)f(x) = x. Thus, f(x)=x1+x2f(x) = \frac{x}{1+x^2}.

  2. Evaluate the definite integral: The integral to evaluate is I=π4π4f(x)+x9x3+x+1cos2xdxI = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)+x^9-x^3+x+1}{\cos^2 x} dx. Substitute f(x)=x1+x2f(x) = \frac{x}{1+x^2}: I=π4π4x1+x2+x9x3+x+1cos2xdxI = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{x}{1+x^2}+x^9-x^3+x+1}{\cos^2 x} dx. Let the numerator be N(x)=x1+x2+x9x3+x+1N(x) = \frac{x}{1+x^2}+x^9-x^3+x+1 and the denominator be D(x)=cos2xD(x) = \cos^2 x. The interval of integration is [π4,π4][-\frac{\pi}{4}, \frac{\pi}{4}], which is symmetric about x=0x=0.

  3. Analyze the parity of the integrand: The denominator D(x)=cos2xD(x) = \cos^2 x is an even function since cos2(x)=cos2x\cos^2(-x) = \cos^2 x. Let's analyze the numerator N(x)N(x). We know f(x)=x1+x2f(x) = \frac{x}{1+x^2} is an odd function since f(x)=x1+(x)2=f(x)f(-x) = \frac{-x}{1+(-x)^2} = -f(x). Let's check N(x)N(-x): N(x)=f(x)+(x)9(x)3+(x)+1N(-x) = f(-x) + (-x)^9 - (-x)^3 + (-x) + 1 N(x)=f(x)x9+x3x+1N(-x) = -f(x) - x^9 + x^3 - x + 1. Now, consider N(x)+N(x)N(x) + N(-x): N(x)+N(x)=(x1+x2+x9x3+x+1)+(x1+x2x9+x3x+1)N(x) + N(-x) = \left(\frac{x}{1+x^2}+x^9-x^3+x+1\right) + \left(-\frac{x}{1+x^2}-x^9+x^3-x+1\right) N(x)+N(x)=2N(x) + N(-x) = 2. This means N(x)=N(x)+N(x)2+N(x)N(x)2=22+N(x)N(x)2=1+N(x)N(x)2N(x) = \frac{N(x)+N(-x)}{2} + \frac{N(x)-N(-x)}{2} = \frac{2}{2} + \frac{N(x)-N(-x)}{2} = 1 + \frac{N(x)-N(-x)}{2}. The term N(x)N(x)2\frac{N(x)-N(-x)}{2} is an odd function: N(x)N(x)2=12[(x1+x2+x9x3+x+1)(x1+x2x9+x3x+1)]\frac{N(x)-N(-x)}{2} = \frac{1}{2} \left[\left(\frac{x}{1+x^2}+x^9-x^3+x+1\right) - \left(-\frac{x}{1+x^2}-x^9+x^3-x+1\right)\right] =12[2x1+x2+2x92x3+2x]=x1+x2+x9x3+x= \frac{1}{2} \left[\frac{2x}{1+x^2} + 2x^9 - 2x^3 + 2x\right] = \frac{x}{1+x^2} + x^9 - x^3 + x. This is indeed an odd function. So, N(x)=1+(an odd function)N(x) = 1 + (\text{an odd function}).

    The integrand is N(x)D(x)=1+(odd function)cos2x=1cos2x+odd functioncos2x\frac{N(x)}{D(x)} = \frac{1 + (\text{odd function})}{\cos^2 x} = \frac{1}{\cos^2 x} + \frac{\text{odd function}}{\cos^2 x}. The term odd functioncos2x\frac{\text{odd function}}{\cos^2 x} is an odd function (odd/even = odd). The integral of an odd function over a symmetric interval [a,a][-a, a] is 0. So, π4π4odd functioncos2xdx=0\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\text{odd function}}{\cos^2 x} dx = 0.

  4. Calculate the remaining integral: We are left with I=π4π41cos2xdxI = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx. I=π4π4sec2xdxI = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec^2 x dx. The antiderivative of sec2x\sec^2 x is tanx\tan x. I=[tanx]π4π4=tan(π4)tan(π4)I = [\tan x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan\left(-\frac{\pi}{4}\right). Since tan(π4)=1\tan\left(\frac{\pi}{4}\right) = 1 and tan(π4)=1\tan\left(-\frac{\pi}{4}\right) = -1, I=1(1)=1+1=2I = 1 - (-1) = 1 + 1 = 2.

The value of the integral is 2.