Solveeit Logo

Question

Question: Let $y = y(x)$ be the solution of the differential equation $\frac{dy}{dx} + 2y = f(x)$, where $f(x)...

Let y=y(x)y = y(x) be the solution of the differential equation dydx+2y=f(x)\frac{dy}{dx} + 2y = f(x), where f(x)={1,x[0,1]0,otherwisef(x) = \begin{cases} 1, \quad x \in [0, 1] \\ 0, \quad \text{otherwise} \end{cases}

If y(0)=0y(0) = 0, then y(32)y(\frac{3}{2}) is:

A

e212e3\frac{e^2 - 1}{2e^3}

B

e21e3\frac{e^2 - 1}{e^3}

C

e2+12e4\frac{e^2 + 1}{2e^4}

D

12e\frac{1}{2e}

Answer

(A) e212e3\frac{e^2 - 1}{2e^3}

Explanation

Solution

The given differential equation is a first-order linear differential equation: dydx+2y=f(x)\frac{dy}{dx} + 2y = f(x) where f(x)f(x) is a piecewise function: f(x)={1,x[0,1]0,otherwisef(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & \text{otherwise} \end{cases} The initial condition is y(0)=0y(0) = 0. We need to find y(32)y\left(\frac{3}{2}\right).

The differential equation is of the form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x), with P(x)=2P(x) = 2. The integrating factor (IF) is eP(x)dx=e2dx=e2xe^{\int P(x) dx} = e^{\int 2 dx} = e^{2x}.

We solve the differential equation in two intervals:

Case 1: x[0,1]x \in [0, 1] In this interval, f(x)=1f(x) = 1. The differential equation becomes: dydx+2y=1\frac{dy}{dx} + 2y = 1 Multiplying by the integrating factor e2xe^{2x}: e2xdydx+2e2xy=e2xe^{2x} \frac{dy}{dx} + 2e^{2x} y = e^{2x} The left side is the derivative of (ye2x)(y e^{2x}): ddx(ye2x)=e2x\frac{d}{dx}(y e^{2x}) = e^{2x} Integrating both sides with respect to xx: ye2x=e2xdx+C1y e^{2x} = \int e^{2x} dx + C_1 ye2x=e2x2+C1y e^{2x} = \frac{e^{2x}}{2} + C_1 Dividing by e2xe^{2x} to find y(x)y(x): y(x)=12+C1e2xy(x) = \frac{1}{2} + C_1 e^{-2x} Now, apply the initial condition y(0)=0y(0) = 0: 0=12+C1e2(0)0 = \frac{1}{2} + C_1 e^{-2(0)} 0=12+C10 = \frac{1}{2} + C_1 C1=12C_1 = -\frac{1}{2} So, for x[0,1]x \in [0, 1], the solution is: y(x)=1212e2xy(x) = \frac{1}{2} - \frac{1}{2} e^{-2x}

Case 2: x>1x > 1 In this interval, f(x)=0f(x) = 0. The differential equation becomes: dydx+2y=0\frac{dy}{dx} + 2y = 0 Multiplying by the integrating factor e2xe^{2x}: e2xdydx+2e2xy=0e^{2x} \frac{dy}{dx} + 2e^{2x} y = 0 ddx(ye2x)=0\frac{d}{dx}(y e^{2x}) = 0 Integrating both sides with respect to xx: ye2x=C2y e^{2x} = C_2 y(x)=C2e2xy(x) = C_2 e^{-2x} To ensure that y(x)y(x) is a continuous solution, the value of y(x)y(x) at x=1x=1 must be the same for both expressions. From Case 1, y(1)=1212e2(1)=1212e2y(1) = \frac{1}{2} - \frac{1}{2} e^{-2(1)} = \frac{1}{2} - \frac{1}{2} e^{-2}. From Case 2, y(1)=C2e2(1)=C2e2y(1) = C_2 e^{-2(1)} = C_2 e^{-2}. Equating these two values: C2e2=1212e2C_2 e^{-2} = \frac{1}{2} - \frac{1}{2} e^{-2} C2=(1212e2)e2C_2 = \left(\frac{1}{2} - \frac{1}{2} e^{-2}\right) e^2 C2=12e212e2e2C_2 = \frac{1}{2} e^2 - \frac{1}{2} e^{-2} e^2 C2=e212C_2 = \frac{e^2 - 1}{2} So, for x>1x > 1, the solution is: y(x)=(e212)e2xy(x) = \left(\frac{e^2 - 1}{2}\right) e^{-2x}

Finally, we need to find y(32)y\left(\frac{3}{2}\right). Since 32=1.5\frac{3}{2} = 1.5, which is greater than 1, we use the solution from Case 2: y(32)=(e212)e232y\left(\frac{3}{2}\right) = \left(\frac{e^2 - 1}{2}\right) e^{-2 \cdot \frac{3}{2}} y(32)=(e212)e3y\left(\frac{3}{2}\right) = \left(\frac{e^2 - 1}{2}\right) e^{-3} y(32)=e212e3y\left(\frac{3}{2}\right) = \frac{e^2 - 1}{2e^3}

Comparing this result with the given options: (A) e212e3\frac{e^2 - 1}{2e^3} (B) e21e3\frac{e^2 - 1}{e^3} (C) e2+12e4\frac{e^2 + 1}{2e^4} (D) 12e\frac{1}{2e}

The calculated value matches option (A).