Solveeit Logo

Question

Question: Let y = y(x) be the solution of the differential equation $(1-x^2)\frac{dy}{dx}-xy=1, x \in (-1, 1)$...

Let y = y(x) be the solution of the differential equation (1x2)dydxxy=1,x(1,1)(1-x^2)\frac{dy}{dx}-xy=1, x \in (-1, 1). If y(0) = 0, then y(12)y\left(\frac{1}{2}\right) is equal to

A

π33\frac{\pi}{3\sqrt{3}}

B

π3\frac{\pi}{\sqrt{3}}

C

π6\frac{\pi}{6}

D

π3\frac{\pi}{3}

Answer

π33\frac{\pi}{3\sqrt{3}}

Explanation

Solution

Given the differential equation (1x2)dydxxy=1,(1-x^2)\frac{dy}{dx} - xy = 1, we first rewrite it in standard linear form by dividing by 1x21-x^2 (valid for x(1,1)x\in(-1,1)): dydxx1x2y=11x2.\frac{dy}{dx} - \frac{x}{1-x^2} y = \frac{1}{1-x^2}.

The integrating factor μ(x)\mu(x) is computed as: μ(x)=exp(x1x2dx).\mu(x) = \exp\left(\int -\frac{x}{1-x^2}\,dx\right). Let u=1x2u = 1-x^2 so that du=2xdxdu = -2x\,dx. Then: x1x2dx=12duu=12lnu=12ln1x2.\int -\frac{x}{1-x^2}\,dx = \frac{1}{2}\int \frac{du}{u} = \frac{1}{2}\ln|u| = \frac{1}{2}\ln|1-x^2|. Thus, μ(x)=e12ln1x2=1x2.\mu(x)=e^{\frac{1}{2}\ln|1-x^2|} = \sqrt{1-x^2}.

Multiplying the differential equation by 1x2\sqrt{1-x^2} gives: 1x2dydxx1x2y=11x2.\sqrt{1-x^2}\frac{dy}{dx} - \frac{x}{\sqrt{1-x^2}} y = \frac{1}{\sqrt{1-x^2}}.

Notice that the left-hand side is the derivative of y1x2y\sqrt{1-x^2}: ddx(y1x2)=11x2.\frac{d}{dx}\left(y\sqrt{1-x^2}\right) = \frac{1}{\sqrt{1-x^2}}.

Integrate both sides: y1x2=dx1x2=arcsinx+C.y\sqrt{1-x^2} = \int \frac{dx}{\sqrt{1-x^2}} = \arcsin{x} + C.

Using the initial condition y(0)=0y(0)=0: 0102=arcsin0+CC=0.0\cdot\sqrt{1-0^2} = \arcsin{0} + C \quad \Rightarrow \quad C=0.

Thus, the solution is: y(x)=arcsinx1x2.y(x) = \frac{\arcsin x}{\sqrt{1-x^2}}.

To find y(12)y\left(\frac{1}{2}\right): y(12)=arcsin(12)1(12)2=π6114=π634=π/63/2=π33.y\left(\frac{1}{2}\right) = \frac{\arcsin\left(\frac{1}{2}\right)}{\sqrt{1-\left(\frac{1}{2}\right)^2}} = \frac{\frac{\pi}{6}}{\sqrt{1-\frac{1}{4}}} = \frac{\frac{\pi}{6}}{\sqrt{\frac{3}{4}}} = \frac{\pi/6}{\sqrt3/2} = \frac{\pi}{3\sqrt{3}}.