Question
Mathematics Question on Differential equations
Let y = y(x), x > 1, be the solution of the differential equation
(x−1)dxdy+2xy=x−11with y(2)=2e41+e4. If y(3)=βeαeα+1 ,
then the value of α + β is equal to ____.
Answer
The correct answer is 14
dxdy+y(x−12x)=(x−1)21
I.F.=e∫x−12xdx
=e2∫(x−1x−1+x−11)dx
=e2x+2ln(x−1)
=e2x(x−1)2
⇒ ∫d(y⋅e2x(x−1)2)=∫e2xdx
⇒ y⋅e2x(x−1)2=2e2x+c
↓$$y(2) = \frac{1+e^4}{2e^4}
2e41+e4⋅e4=2e4+c
⇒ c=2e4(e41+e4−e4)=21
⇒ y⋅e2x(x−1)2=2e2x+1
↓y(3)=βeαeα+1
⇒βeαeα+1.e6.4=2e6+1
⇒ α=6 and β=8
⇒ α+β = 14