Solveeit Logo

Question

Mathematics Question on Differential equations

Let y = y(x), x > 1, be the solution of the differential equation
(x1)dydx+2xy=1x1(x-1)\frac{dy}{dx} + 2xy = \frac{1}{x-1}with y(2)=1+e42e4y(2) = \frac{1+e^4}{2e^4}. If y(3)=eα+1βeαy(3) = \frac{e^α + 1}{βe^α} ,
then the value of α + β is equal to ____.

Answer

The correct answer is 14
dydx+y(2xx1)=1(x1)2\frac{dy}{dx} + y(\frac{2x}{x-1}) = \frac{1}{(x-1)^2}
I.F.=e2xx1dx\text{I.F.} = e^{\int \frac{2x}{x-1} \,dx}
=e2(x1x1+1x1)dx= e^{2\int \left(\frac{x-1}{x-1} + \frac{1}{x-1}\right) \,dx}
=e2x+2ln(x1)= e^{2x + 2\ln(x-1)}
=e2x(x1)2= e^{2x} ( x-1)²
d(ye2x(x1)2)=e2xdx\int d(y \cdot e^{2x}(x-1)^2) = \int e^{2x} \, dx
ye2x(x1)2=e2x2+cy \cdot e^{2x}(x-1)^2 = \frac{e^{2x}}{2} + c
↓$$y(2) = \frac{1+e^4}{2e^4}
1+e42e4e4=e42+c\frac{1+e^4}{2e^4} \cdot e^4 = \frac{e^4}{2} + c
c=e42(1+e4e4e4)=12c = \frac{e^4}{2} \left( \frac{1+e^4 - e^4}{e^4} \right) = \frac{1}{2}
ye2x(x1)2=e2x+12y \cdot e^{2x}(x-1)^2 = \frac{e^{2x+1}}{2}
y(3)=eα+1βeα↓y(3) = \frac{e^α+1}{βe^α}
eα+1βeα.e6.4=e6+12⇒ \frac{e^α+1}{βe^α}.e^6.4 = \frac{e^6+1}{2}
⇒ α=6 and β=8
⇒ α+β = 14