Question
Mathematics Question on Differential equations
Let y = y(x) be the solution of the differential equation dxdy+2cos4x−cos2x√2y=xetan−1(√2cot2x),0<x<2π with y(4π)=32π2 If y(3π)=18π2e−tan−1(α) then the value of 3α2 is equal to ______
Answer
The correct answer is: 2
dxdy+2cos4x−cos2x√2y=xetan−1(√2cot2x)
I,F.=e∫1+cos22x22dx=e2∫2+tan22x2sec22x
= etan−1(2tan(2x))
⇒ y⋅etan−1(2tan(2x)) = ∫xetan−1(2cot(2x))⋅etan−1(2tan(2x))dx+c
⇒ y⋅etan−1(2tan(2x))
=e2π.2x2+c
When
x=4π,y=32π2 gives c=0.
When
x=3π,y=18π2etan−1α
So, 18π2etan−1α.e−tan−1(−23)=e2π18π2
⇒tan−1(−α)=tan−1(23)
⇒α=−32⇒3a2=2