Solveeit Logo

Question

Mathematics Question on Differential equations

Let y = y(x) be the solution of the differential equation dydx+2y2cos4xcos2x=xetan1(2cot2x),0<x<π2\frac{dy}{dx}+\frac{√2y}{2cos^4x−cos2x}=xe^{tan−1}(√2cot2x),0<x<\frac{π}{2} with y(π4)=π232y(\frac{π}{4})=\frac{π^2}{32} If y(π3)=π218etan1(α)y(\frac{π}{3})=\frac{π^2}{18}e^{−tan−1}(α) then the value of 3α23α^2 is equal to ______

Answer

The correct answer is: 2

dydx+2y2cos4xcos2x=xetan1(2cot2x)\frac{dy}{dx}+\frac{√2y}{2cos^4x−cos2x}=xe^{tan−1}(√2cot2x)

I,F.=e22dx1+cos22x=e22sec22x2+tan22xI,F.=e^{∫}\frac{2\sqrt2dx}{1+cos^22x}=e^{\sqrt2\,∫}\frac{2\,sec^22x}{2+tan^22x}
= etan1(tan(2x)2)e^{\tan^{-1}\left(\frac{\tan(2x)}{\sqrt{2}}\right)}
yetan1(tan(2x)2)y \cdot e^{\tan^{-1}\left(\frac{\tan(2x)}{\sqrt{2}}\right)} = xetan1(2cot(2x))etan1(tan(2x)2)dx+c\int x e^{\tan^{-1}(\sqrt{2}\cot(2x))} \cdot e^{\tan^{-1}\left(\frac{\tan(2x)}{\sqrt{2}}\right)} \, dx + c
yetan1(tan(2x)2)y \cdot e^{\tan^{-1}\left(\frac{\tan(2x)}{\sqrt{2}}\right)}
=eπ2.x22+c= e^{\frac{\pi}{2}}.\frac{x^2}{2}+c

When

x=π4,y=π232x=\frac{\pi}{4},y=\frac{\pi^2}{32} gives c=0.c=0.
When
x=π3,y=π218etan1αx=\frac{\pi}{3},y=\frac{\pi^2}{18}e^{tan^{-1}\alpha}

So, π218etan1α.etan1(32)=eπ2π218\frac{\pi^2}{18}e^{tan^{-1}\alpha}.e^{-tan{-1}(-\sqrt{\frac{3}{2}})}=e^{\frac{\pi}{2}}\frac{\pi^2}{18}
tan1(α)=tan1(32)⇒ tan^{-1}(-\alpha)=tan^{-1}\left(\sqrt{\frac{3}{2}}\right)

α=233a2=2⇒α=-\sqrt\frac{2}{3}⇒3a^2=2