Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (x2−3y2)dx+3xydy=0,y(1)=1.Then 6y2(e) is equal to
A
e2
B
23e2
C
3e2
D
2e2
Answer
2e2
Explanation
Solution
The correct answer is (D) : 2e2
(x2−3y2)dx+3xydy=0
dxdy=3xy3y2−x2⇒dxdy=xy−31yx.....(1)
Put y=vx
dxdy=v+xdxdv
(1) ⇒v+xdxdv=v−31v1
⇒vdv=3x−1
Integrating both side
2v2=3−1lnx+c
⇒2x2y2=3−1lnx+c
y(1)=1
⇒21=c
⇒2x2y2=3−1lnx+21
⇒y2=−32x2lnx+x2
y2(e)=−32e2+e2=3e2
⇒6y2(e)=2e2