Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (1+y2)etanxdx+cos2x(1+e2tanx)dy=0, y(0)=1. Then y(4π) is equal to:
A
e2
B
e21
C
e1
D
e22
Answer
e1
Explanation
Solution
The given differential equation is:
(1+y2)etan−1xdx+cos2x(1+e2tan−1x)dy=0.
Separate the variables:
1+e2tan−1xsec2x⋅etan−1xdx+1+y2dy=0.
Integrating both sides:
tan−1(etan−1x)+tan−1(y)=C.
Using the initial condition y(0)=1:
tan−1(etan−1(0))+tan−1(1)=C.
Simplify:
tan−1(e0)+tan−1(1)=C⟹tan−1(1)+tan−1(1)=C⟹C=2π.
The solution becomes:
tan−1(etan−1x)+tan−1(y)=2π.
At x=4π, substitute into the solution:
tan−1(etan−1(4π))+tan−1(y)=2π.
Rearrange:
tan−1(y)=2π−tan−1(etan−1(4π)).
From the properties of tan−1, substitute:
tan−1(y)=cot−1(e).
Simplify:
y=e1.
Final Answer: e1.