Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation sec(x)dxdy+[2(1−x)tan(x)+x(2−x)]=0 such that y(0)=2. Then y(2) is equal to:
A
2
B
2\{1 - \sin(2)\}
C
2\{\sin(2) + 1\}
D
1
Answer
2
Explanation
Solution
Solution: We start with the differential equation:
secxdy+2(1−x)tanx+x(2−x)dx=0
Divide by secx to simplify:
dxdy=−2(1−x)sinx+x(2−x)cosx
Integrate both sides:
y(x)=−∫2(1−x)sinx+x(2−x)cosxdx+C
Separate the integrals:
y(x)=−∫2(1−x)sinxdx−∫x(2−x)cosxdx+C
Calculate each integral:
y(x)=(x2−2x)sinx+C
Using the initial condition y(0)=2:
y(0)=0+C⇒C=2
Thus,
y(x)=(x2−2x)sinx+2
Finally, substituting x=2:
y(2)=(22−2×2)sin2+2=2