Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation sec(x)dydx+[2(1x)tan(x)+x(2x)]=0\sec(x) \frac{dy}{dx} + [2(1 - x) \tan(x) + x(2 - x)] = 0 such that y(0)=2y(0) = 2. Then y(2)y(2) is equal to:

A

2

B

2\{1 - \sin(2)\}

C

2\{\sin(2) + 1\}

D

1

Answer

2

Explanation

Solution

Solution: We start with the differential equation:

secxdy+2(1x)tanx+x(2x)dx=0\sec x \, dy + \\{ 2(1 - x) \tan x + x(2 - x) \\} \, dx = 0

Divide by secx\sec x to simplify:

dydx=2(1x)sinx+x(2x)cosx\dfrac{dy}{dx} = -\\{ 2(1 - x) \sin x + x(2 - x) \cos x \\}

Integrate both sides:

y(x)=2(1x)sinx+x(2x)cosxdx+Cy(x) = - \int \\{ 2(1 - x) \sin x + x(2 - x) \cos x \\} \, dx + C

Separate the integrals:

y(x)=2(1x)sinxdxx(2x)cosxdx+Cy(x) = - \int 2(1 - x) \sin x \, dx - \int x(2 - x) \cos x \, dx + C

Calculate each integral:

y(x)=(x22x)sinx+Cy(x) = (x^2 - 2x) \sin x + C

Using the initial condition y(0)=2y(0) = 2:

y(0)=0+CC=2y(0) = 0 + C \Rightarrow C = 2

Thus,

y(x)=(x22x)sinx+2y(x) = (x^2 - 2x) \sin x + 2

Finally, substituting x=2x = 2:

y(2)=(222×2)sin2+2=2y(2) = (2^2 - 2 \times 2) \sin 2 + 2 = 2