Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (1−x2)dy=(xy+(x3+2)1−x2)dx−1<x<1, and y(0)=0. If ∫−21211−x2y(x)dx=k then k−1 is equal to_______.
Answer
(1−x2)dy=(xy+(x3+2)1−x2)dx
∴ dxdy−1−x2xy=1−x2x3+3
∴$$ I.F.= e∫−1−x2xdx=1−x2
Solution is
y⋅1−x2=∫(x3+3)dx
y⋅1−x2=4x4+3x+c
∵y(0)=0⇒c=0
∴ y(x)=41−x2x4+12x
∴ ∫−21211−x2y(x)dx=∫−21214x4+12xdx
= ∫0212x4dx
∴$$ k=\frac{1}{320}
∴ k−1=320