Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation (1x2)dy=(xy+(x3+2)1x2)dx1<x<1(1 - x^2) \, dy = (xy + (x^3 + 2) \sqrt{1 - x^2}) \, dx \quad -1 < x < 1, and y(0)=0.y(0) = 0. If 12121x2y(x)dx=k\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 - x^2} \, y(x) \, dx = k then k1k^{−1} is equal to_______.

Answer

(1x2)dy=(xy+(x3+2)1x2)dx(1 - x^2) \, dy = (xy + (x^3 + 2) \sqrt{1 - x^2}) \, dx

dydxx1x2y=x3+31x2\frac{dy}{dx} - \frac{x}{1 - x^2}y = \frac{x^3 + 3}{\sqrt{1 - x^2}}

∴$$ I.F.= ex1x2dx=1x2 e^{\int_{-\frac{x}{1-x^2}}dx} = \sqrt{1 - x^2}
Solution is
y1x2=(x3+3)dxy \cdot \sqrt{1 - x^2} = \int (x^3 + 3) \, dx

y1x2=x44+3x+cy \cdot \sqrt{1 - x^2} = \frac{x^4}{4} + 3x + c
y(0)=0c=0∵y(0)=0⇒c=0

y(x)=x4+12x41x2y(x) = \frac{x^4 + 12x}{4\sqrt{1 - x^2}}

12121x2y(x)dx=1212x4+12x4dx\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 - x^2} \, y(x) \, dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^4 + 12x}{4} \, dx

== 012x42dx\int_{0}^{\frac{1}{2}} \frac{x^4}{2} \, dx

∴$$ k=\frac{1}{320}
k1=320k^{−1}=320