Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation (x+1)yy=e3x(x\+1)2(x + 1)y' – y = e^{3x}(x \+ 1)^2, with y(0)=13y(0)=\frac 13. Then, the point x=43x=−\frac 43 for the curve y=y(x)y = y(x) is :

A

not a critical point

B

a point of local minima

C

a point of local maxima

D

a point of inflection

Answer

a point of local minima

Explanation

Solution

(x+1)dydxy=e3x(x+1)2(x+1)\frac {dy}{dx}−y=e^{3x}(x+1)^2

dydxyx+1=e3x(x+1)\frac {dy}{dx} −\frac {y}{x+1}=e^{3x}(x+1)

If e1x+1x=elog(x+1)=1x+1e^{−∫\frac {1}{x+1}x}=e^{−log (x+1)}=\frac {1}{x+1}

y(1x+1)=e3x(x+1)x+1dxy(\frac {1}{x+1})=∫\frac {e^{3x}(x+1)}{x+1}dx

yx+1=e3xdx\frac {y}{x+1} = ∫e^{3x}dx

yx+1=e3x3+c\frac {y}{x+1}=\frac {e^{3x}}{3} +c

y(0)=13y(0)=\frac 13

13=13+c\frac 13=\frac 13+c
c=0c = 0
y=e3x3(x+1)y=\frac {e^{3x}}{3}(x+1)

y=e3x(x+1)+e3x3y' = e^{3x}(x+1)+\frac {e^{3x}}{3}

=e3x(x+43)= e^{3x}(x+\frac 43)

y=3e3x(x+43)+e3xy” = 3e^{3x}(x+\frac 43)+e^{3x}

=e3x(3x+5)=e^{3x}(3x+5)
y=0y'=0 at x=43x=−\frac 43 & y=e4(1)>0y''=e^{−4}(1)>0 at x=43x=−\frac 43
x=43x=−\frac 43 is point of local minima.

So, the correct option is (B): a point of local minima.