Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (x+1)y′–y=e3x(x\+1)2, with y(0)=31. Then, the point x=−34 for the curve y=y(x) is :
A
not a critical point
B
a point of local minima
C
a point of local maxima
D
a point of inflection
Answer
a point of local minima
Explanation
Solution
(x+1)dxdy−y=e3x(x+1)2
dxdy−x+1y=e3x(x+1)
If e−∫x+11x=e−log(x+1)=x+11
∴ y(x+11)=∫x+1e3x(x+1)dx
x+1y=∫e3xdx
x+1y=3e3x+c
∵ y(0)=31
31=31+c
c=0
y=3e3x(x+1)
y′=e3x(x+1)+3e3x
=e3x(x+34)
y”=3e3x(x+34)+e3x
=e3x(3x+5)
y′=0 at x=−34 & y′′=e−4(1)>0 at x=−34
⇒ x=−34 is point of local minima.
So, the correct option is (B): a point of local minima.