Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (2xlogex)dxdy+2y=x3logex,x>0andy(e−1)=0. Then, y(e) is equal to:
2e3
3e−2
e−3
e−2
e−3
Solution
The given differential equation is:
dxdy+xlnxy=2x23.
Step 1: Find the integrating factor (I.F.)
I.F.=e∫xlnx1dx=eln(lnx)=lnx.
Step 2: Multiply through by I.F.
(lnx)y=∫2x23lnxdx.
Step 3: Solve the integral
∫2x23lnxdx=23∫x−2lnxdx.
Use integration by parts, letting u=lnx and dv=x−2dx:
∫lnx⋅x−2dx=−xlnx−∫−x21dx=−xlnx+x1.
Thus:
∫2x23lnxdx=23(−xlnx+x1).
Step 4: Write the solution
ylnx=23(−xlnx+x1)+C.
Simplify:
y=−2xlnx3lnx+2xlnx3+lnxC.
y=−2x3+lnxC.
Step 5: Apply the initial condition y(e−1)=0
0=−2e−13+ln(e−1)C.
0=−2e3+−1C.
C=−23e.
Step 6: Find y(e)
y(e)=−2e3+lne−23e.
y(e)=−2e3−2e3=−e3.
Final Answer: −e3.