Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation (2xlogex)dydx+2y=3xlogex,x>0andy(e1)=0.\left( 2x \log_e x \right) \frac{dy}{dx} + 2y = \frac{3}{x} \log_e x, \, x>0 \, \text{and} \, y(e^{-1}) = 0. Then, y(e)y(e) is equal to:

A

32e\frac{3}{2e}

B

23e\frac{-2}{3e}

C

3e\frac{-3}{e}

D

2e\frac{-2}{e}

Answer

3e\frac{-3}{e}

Explanation

Solution

The given differential equation is:

dydx+yxlnx=32x2.\frac{dy}{dx} + \frac{y}{x \ln x} = \frac{3}{2x^2}.

Step 1: Find the integrating factor (I.F.)

I.F.=e1xlnxdx=eln(lnx)=lnx.\text{I.F.} = e^{\int \frac{1}{x \ln x} dx} = e^{\ln(\ln x)} = \ln x.

Step 2: Multiply through by I.F.

(lnx)y=3lnx2x2dx.(\ln x)y = \int \frac{3 \ln x}{2x^2} dx.

Step 3: Solve the integral

3lnx2x2dx=32x2lnxdx.\int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \int x^{-2} \ln x dx.

Use integration by parts, letting u=lnxu = \ln x and dv=x2dxdv = x^{-2} dx:

lnxx2dx=lnxx1x2dx=lnxx+1x.\int \ln x \cdot x^{-2} dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}.

Thus:

3lnx2x2dx=32(lnxx+1x).\int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right).

Step 4: Write the solution

ylnx=32(lnxx+1x)+C.y \ln x = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right) + C.

Simplify:

y=3lnx2xlnx+32xlnx+Clnx.y = -\frac{3 \ln x}{2x \ln x} + \frac{3}{2x \ln x} + \frac{C}{\ln x}.

y=32x+Clnx.y = -\frac{3}{2x} + \frac{C}{\ln x}.

Step 5: Apply the initial condition y(e1)=0y(e^{-1}) = 0

0=32e1+Cln(e1).0 = -\frac{3}{2e^{-1}} + \frac{C}{\ln(e^{-1})}.

0=32e+C1.0 = -\frac{3}{2e} + \frac{C}{-1}.

C=32e.C = -\frac{3}{2}e.

Step 6: Find y(e)y(e)

y(e)=32e+32elne.y(e) = -\frac{3}{2e} + \frac{-\frac{3}{2}e}{\ln e}.

y(e)=32e32e=3e.y(e) = -\frac{3}{2e} - \frac{3}{2e} = -\frac{3}{e}.

Final Answer: 3e-\frac{3}{e}.