Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (1+x2)dxdy+y=etan−1x,y(1)=0.Then y(0) is:
A
41(eπ/2−1)
B
21(1−eπ/2)
C
41(1−eπ/2)
D
21(eπ/2−1)
Answer
21(1−eπ/2)
Explanation
Solution
The given differential equation is:
dxdy+1+x2y=1+x2etan−1x.
Integrating factor (I.F.):
I.F.=e∫1+x21dx=etan−1x.
Multiply through by I.F.:
y⋅etan−1x=∫etan−1x⋅1+x2etan−1xdx+C.
Simplify:
y⋅etan−1x=∫e2tan−1x⋅1+x21dx+C.
Substitute:
tan−1x=z,1+x21dx=dz.
Thus:
y⋅etan−1x=2e2z+C.
Apply initial condition: y(1)=0, tan−1(1)=4π:
0=2eπ/2+C⟹C=−2eπ/2.
Finally:
y⋅etan−1x=2e2tan−1x−2eπ/2.
At x=0, tan−1(0)=0:
y(0)=21(1−e−π/2).