Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation (x+y+2)2dx=dy,y(0)=−2. Let the maximum and minimum values of the function y=y(x) in [0,3π] be α and β, respectively. If (3α+π)2+β2=γ+δ3,γ,δ∈Z, then γ+δ equals ….
Given:
dxdy=(x+y+2)2,y(0)=−2.
Step 1: Substitute v=x+y+2:
Let x+y+2=v. Then, 1+dxdy=dxdv. From the differential equation, dxdv=1+v2.
Step 2: Separate Variables and Integrate:
∫1+v2dv=∫dx. We have: tan−1(v)=x+C.
Step 3: Apply Initial Condition:
At x=0,y=−2, so v=0, giving C=0. Thus, tan−1(x+y+2)=x, or y=tanx−x−2.
Step 4: Determine fmin and fmax on [0,3π]:
f(x)=tanx−x−2,x∈[0,3π]. We find f′(x)=sec2x−1>0, so f(x) is increasing in the interval. fmin=f(0)=−2=β, fmax=f(3π)=3−3π−2=α.
Step 5: Calculate (3α+π)2+β2:
(3α+π)2+β2=(3(3−3π−2)+π)2+(−2)2. Simplifying, we get: γ+δ3=67−363. Therefore, γ=67 and δ=−36.
Step 6: Calculate γ+δ:
γ+δ=67−36=31.
Answer: 31