Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation (x+y+2)2dx=dy,y(0)=2.(x + y + 2)^2 \, dx = dy, \quad y(0) = -2. Let the maximum and minimum values of the function y=y(x)y = y(x) in [0,π3]\left[ 0, \frac{\pi}{3} \right] be α\alpha and β\beta, respectively. If (3α+π)2+β2=γ+δ3,γ,δZ,(3\alpha + \pi)^2 + \beta^2 = \gamma + \delta\sqrt{3}, \quad \gamma, \delta \in \mathbb{Z}, then γ+δ\gamma + \delta equals \dots.

Answer

Given:

dydx=(x+y+2)2,y(0)=2.\frac{dy}{dx} = (x + y + 2)^2, \quad y(0) = -2.

Step 1: Substitute v=x+y+2v = x + y + 2:

Let x+y+2=vx + y + 2 = v. Then, 1+dydx=dvdx.1 + \frac{dy}{dx} = \frac{dv}{dx}. From the differential equation, dvdx=1+v2.\frac{dv}{dx} = 1 + v^2.

Step 2: Separate Variables and Integrate:

dv1+v2=dx.\int \frac{dv}{1 + v^2} = \int dx. We have: tan1(v)=x+C.\tan^{-1}(v) = x + C.

Step 3: Apply Initial Condition:

At x=0,y=2x = 0, y = -2, so v=0v = 0, giving C=0C = 0. Thus, tan1(x+y+2)=x,\tan^{-1}(x + y + 2) = x, or y=tanxx2.y = \tan x - x - 2.

Step 4: Determine fminf_{\text{min}} and fmaxf_{\text{max}} on [0,π3][0, \frac{\pi}{3}]:

f(x)=tanxx2,x[0,π3].f(x) = \tan x - x - 2, \quad x \in \left[0, \frac{\pi}{3}\right]. We find f(x)=sec2x1>0f'(x) = \sec^2 x - 1 > 0, so f(x)f(x) is increasing in the interval. fmin=f(0)=2=β,f_{\text{min}} = f(0) = -2 = \beta, fmax=f(π3)=3π32=α.f_{\text{max}} = f\left(\frac{\pi}{3}\right) = \sqrt{3} - \frac{\pi}{3} - 2 = \alpha.

Step 5: Calculate (3α+π)2+β2(3\alpha + \pi)^2 + \beta^2:

(3α+π)2+β2=(3(3π32)+π)2+(2)2.(3\alpha + \pi)^2 + \beta^2 = \left(3\left(\sqrt{3} - \frac{\pi}{3} - 2\right) + \pi\right)^2 + (-2)^2. Simplifying, we get: γ+δ3=67363.\gamma + \delta\sqrt{3} = 67 - 36\sqrt{3}. Therefore, γ=67\gamma = 67 and δ=36\delta = -36.

Step 6: Calculate γ+δ\gamma + \delta:

γ+δ=6736=31.\gamma + \delta = 67 - 36 = 31.

Answer: 31