Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation: (x2+4)2dy+(2x3y+8xy2)dx=0.(x^2 + 4)^2 \, dy + \left( 2x^3 y + 8xy - 2 \right) dx = 0. If y(0)=0y(0) = 0, then y(2)y(2) is equal to:

A

π8\frac{\pi}{8}

B

π16\frac{\pi}{16}

C

2π2\pi

D

π32\frac{\pi}{32}

Answer

π32\frac{\pi}{32}

Explanation

Solution

Rewriting the given equation:

dydx+y2x3+8x(x2+4)2=2(x2+4)2.\frac{dy}{dx} + y \frac{2x^3 + 8x}{(x^2 + 4)^2} = \frac{2}{(x^2 + 4)^2}.

This is a linear differential equation in the form: dydx+P(x)y=Q(x),\frac{dy}{dx} + P(x)y = Q(x), where P(x)=2x3+8x(x2+4)2P(x) = \frac{2x^3 + 8x}{(x^2 + 4)^2} and Q(x)=2(x2+4)2Q(x) = \frac{2}{(x^2 + 4)^2}.

The integrating factor (IF) is: IF=eP(x)dx=e2xx2+4dx.\text{IF} = e^{\int P(x) \, dx} = e^{\int \frac{2x}{x^2 + 4} \, dx}.

Simplify: 2xx2+4dx=ln(x2+4).\int \frac{2x}{x^2 + 4} \, dx = \ln(x^2 + 4). Thus: IF=eln(x2+4)=x2+4.\text{IF} = e^{\ln(x^2 + 4)} = x^2 + 4.

Multiply through by the integrating factor:

y(x2+4)=2(x2+4)2(x2+4)dx.y(x^2 + 4) = \int \frac{2}{(x^2 + 4)^2} \cdot (x^2 + 4) \, dx.

Simplify the integral: 2x2+4dx=2x2+22dx=12tan1(x2).\int \frac{2}{x^2 + 4} \, dx = \int \frac{2}{x^2 + 2^2} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right).

Thus: y(x2+4)=tan1(x2)+c.y(x^2 + 4) = \tan^{-1} \left( \frac{x}{2} \right) + c.

Using the initial condition y(0)=0y(0) = 0: 0(02+4)=tan1(02)+c    c=0.0 \cdot (0^2 + 4) = \tan^{-1} \left( \frac{0}{2} \right) + c \implies c = 0.

Therefore: y(x2+4)=tan1(x2).y(x^2 + 4) = \tan^{-1} \left( \frac{x}{2} \right).

At x=2x = 2:

y(4+4)=tan1(1)=π4.y(4 + 4) = \tan^{-1}(1) = \frac{\pi}{4}.

Thus: y(2)=π32.y(2) = \frac{\pi}{32}.