Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation: (x2+4)2dy+(2x3y+8xy−2)dx=0. If y(0)=0, then y(2) is equal to:
A
8π
B
16π
C
2π
D
32π
Answer
32π
Explanation
Solution
Rewriting the given equation:
dxdy+y(x2+4)22x3+8x=(x2+4)22.
This is a linear differential equation in the form: dxdy+P(x)y=Q(x), where P(x)=(x2+4)22x3+8x and Q(x)=(x2+4)22.
The integrating factor (IF) is: IF=e∫P(x)dx=e∫x2+42xdx.
Simplify: ∫x2+42xdx=ln(x2+4). Thus: IF=eln(x2+4)=x2+4.
Multiply through by the integrating factor:
y(x2+4)=∫(x2+4)22⋅(x2+4)dx.
Simplify the integral: ∫x2+42dx=∫x2+222dx=21tan−1(2x).
Thus: y(x2+4)=tan−1(2x)+c.
Using the initial condition y(0)=0: 0⋅(02+4)=tan−1(20)+c⟹c=0.
Therefore: y(x2+4)=tan−1(2x).
At x=2:
y(4+4)=tan−1(1)=4π.
Thus: y(2)=32π.