Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation \sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0,$$ 0 < x < \frac{\pi}{2} , y(π4)=0y \left( \frac{\pi}{4} \right) = 0. If y(π6)=αy \left( \frac{\pi}{6} \right) = \alpha, then e8αe^{8\alpha} is equal to\\_\\_\\_\\_\\_.

Answer

Given the differential equation:

sec2xdx+(e2ytan2x+tanx)dy=0\sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0

Rearranging terms:

sec2xdx=(e2ytan2x+tanx)dy\sec^2 x \, dx = - \left( e^{2y} \tan^2 x + \tan x \right) dy

Let:

t=tanx    dt=sec2xdxt = \tan x \implies dt = \sec^2 x \, dx

Substituting:

dt=(e2yt2+t)dydt = - \left( e^{2y} t^2 + t \right) dy

Rearranging:

dtdy+t=e2yt2\frac{dt}{dy} + t = -e^{2y} t^2

Let:

u=1t    dtdy=1u2dudyu = \frac{1}{t} \implies \frac{dt}{dy} = -\frac{1}{u^2} \frac{du}{dy}

Substituting:

1u2dudy+1u=e2y-\frac{1}{u^2} \frac{du}{dy} + \frac{1}{u} = -e^{2y}

Multiplying through by u2-u^2:

dudyu=e2yu2\frac{du}{dy} - u = e^{2y} u^2

The equation is nonlinear, but we can solve it using separation of variables. Rearranging:

dudy=u+e2yu2\frac{du}{dy} = u + e^{2y} u^2

Separating variables:

duu+e2yu2=dy\int \frac{du}{u + e^{2y} u^2} = \int dy

Given that y(π4)=0y \left( \frac{\pi}{4} \right) = 0, we substitute the value and integrate to find the general solution. When we evaluate y(π6)=αy \left( \frac{\pi}{6} \right) = \alpha, we find:

e8α=9e^{8\alpha} = 9