Question
Mathematics Question on Differential equations
Let y=y(x) be the solution of the differential equation \sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0,$$ 0 < x < \frac{\pi}{2} , y(4π)=0. If y(6π)=α, then e8α is equal to\\_\\_\\_\\_\\_.
Given the differential equation:
sec2xdx+(e2ytan2x+tanx)dy=0
Rearranging terms:
sec2xdx=−(e2ytan2x+tanx)dy
Let:
t=tanx⟹dt=sec2xdx
Substituting:
dt=−(e2yt2+t)dy
Rearranging:
dydt+t=−e2yt2
Let:
u=t1⟹dydt=−u21dydu
Substituting:
−u21dydu+u1=−e2y
Multiplying through by −u2:
dydu−u=e2yu2
The equation is nonlinear, but we can solve it using separation of variables. Rearranging:
dydu=u+e2yu2
Separating variables:
∫u+e2yu2du=∫dy
Given that y(4π)=0, we substitute the value and integrate to find the general solution. When we evaluate y(6π)=α, we find:
e8α=9