Question
Mathematics Question on Differential Equations
Let y=y(x) be the solution of the differential equation dxdy=sinx(secx−sinxtanx)(tanx)+y, x∈(0,2π) satisfying the condition y(4π)=2. Then, y(3π) is
A
3(2+loge3)
B
23(2+loge3)
C
3(1+2loge3)
D
3(2+loge3)
Answer
3(2+loge3)
Explanation
Solution
dxdy−2cos(2x)⋅y=sec2x dxdy+p⋅y=Q
Integrating Factor (IF):
IF=e∫pdx=e−2∫csc(2x)dx
Let 2x=t:
2dx=dt⟹dx=2dt
Calculating the Integrating Factor:
e∫csc(2x)dx=e−∫tantdt=e−ln∣tanx∣=∣tanx∣1
So, the solution becomes:
y(IF)=∫Q⋅(IF)dx+c y=∣tanx∣1∫sec2x⋅∣tanx∣1dx+c y=∣tanx∣1∫∣t∣dt+c(for tanx=t) y=∣tanx∣1ln∣t∣+c y=∣tanx∣(ln∣tanx∣+c)
Setting specific values:
Put x=4π, y=2:
2=ln1+c⟹c=2 y=∣tanx∣(ln∣tanx∣+2) y(3π)=3(ln3+2)