Solveeit Logo

Question

Mathematics Question on Differential Equations

Let y=y(x)y = y(x) be the solution of the differential equation dydx=(tanx)+ysinx(secxsinxtanx)\frac{dy}{dx} = \frac{(\tan x) + y}{\sin x (\sec x - \sin x \tan x)}, x(0,π2)x \in \left( 0, \frac{\pi}{2} \right) satisfying the condition y(π4)=2y \left( \frac{\pi}{4} \right) = 2. Then, y(π3)y \left( \frac{\pi}{3} \right) is

A

3(2+loge3)\sqrt{3} \left( 2 + \log_e \sqrt{3} \right)

B

32(2+loge3)\frac{\sqrt{3}}{2} \left( 2 + \log_e 3 \right)

C

3(1+2loge3)\sqrt{3} \left( 1 + 2 \log_e 3 \right)

D

3(2+loge3)\sqrt{3} \left( 2 + \log_e 3 \right)

Answer

3(2+loge3)\sqrt{3} \left( 2 + \log_e \sqrt{3} \right)

Explanation

Solution

dydx2cos(2x)y=sec2x\frac{dy}{dx} - 2 \cos(2x) \cdot y = \sec^2 x dydx+py=Q\frac{dy}{dx} + p \cdot y = Q

Integrating Factor (IF):

IF=epdx=e2csc(2x)dxIF = e^{\int p \, dx} = e^{-2 \int \csc(2x) \, dx}

Let 2x=t2x = t:

2dx=dt    dx=dt22dx = dt \implies dx = \frac{dt}{2}

Calculating the Integrating Factor:

ecsc(2x)dx=etantdt=elntanx=1tanxe^{\int \csc(2x) dx} = e^{-\int \tan t \, dt} = e^{-\ln |\tan x|} = \frac{1}{|\tan x|}

So, the solution becomes:

y(IF)=Q(IF)dx+cy(IF) = \int Q \cdot (IF) \, dx + c y=1tanxsec2x1tanxdx+cy = \frac{1}{|\tan x|} \int \sec^2 x \cdot \frac{1}{|\tan x|} \, dx + c y=1tanxdtt+c(for tanx=t)y = \frac{1}{|\tan x|} \int \frac{dt}{|t|} + c \quad \text{(for $ \tan x = t $)} y=1tanxlnt+cy = \frac{1}{|\tan x|} \ln |t| + c y=tanx(lntanx+c)y = |\tan x| \left( \ln |\tan x| + c \right)

Setting specific values:

Put x=π4x = \frac{\pi}{4}, y=2y = 2:

2=ln1+c    c=22 = \ln 1 + c \implies c = 2 y=tanx(lntanx+2)y = |\tan x| \left( \ln |\tan x| + 2 \right) y(π3)=3(ln3+2)y\left(\frac{\pi}{3}\right) = \sqrt{3} \left( \ln \sqrt{3} + 2 \right)