Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution of the differential equation dydx=2x(x+y)3x(x+y)1,y(0)=1.\frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1, \quad y(0) = 1.Then, (12+y(12))2\left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2equals:

A

44+e\frac{4}{4 + \sqrt{e}}

B

33e\frac{3}{3 - \sqrt{e}}

C

21+e\frac{2}{1 + \sqrt{e}}

D

12e\frac{1}{2 - \sqrt{e}}

Answer

12e\frac{1}{2 - \sqrt{e}}

Explanation

Solution

We are given the differential equation:

dydx=2x(x+y)3x(x+y)1\frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1

Let x+y=tx + y = t. Therefore, we have:

dtdx=2xt3xt1\frac{dt}{dx} = 2xt^3 - xt - 1

This simplifies to:

dtdx=t2anddtdx=x2 for x=0\frac{dt}{dx} = t^2 \quad \text{and} \quad \frac{dt}{dx} = x^2 \text{ for } x = 0

Now solve the equation:

dz2(2zz)=xdx\int \frac{dz}{2(2z - z)} = \int x dx

After solving:

ln(z1z)=x2+k\ln \left( \frac{z - 1}{z} \right) = x^2 + k

Thus, z=12ez = \frac{1}{2 - \sqrt{e}}.