Solveeit Logo

Question

Mathematics Question on Differential equations

Let y = y(x) be the solution of the differential equation
x(1x2)dydx+(3x2yy4x3)=0,x>1x ( 1 - x² ) \frac{dy}{dx} + ( 3x²y - y - 4x³ ) = 0, x > 1
with y(2) = –2. Then y(3) is equal to

A

-18

B

-12

C

-6

D

-3

Answer

-18

Explanation

Solution

The correct answer is (A) : -18
dydx+y(3x21)x(1x2)=4x3x(1x2)\frac{dy}{dx} + \frac{y(3x^2 - 1)}{x(1 - x^2)} = \frac{4x^3}{x(1 - x^2)}
IF=e3x21xx3dx=elnx3x=eln(x3x)\text{IF} = e^{\int \frac{3x^2 - 1}{x - x^3} \,dx} = e^{-\ln |x^3 - x|} = e^{-\ln(x^3 - x)}
=1x3x= \frac{1}{x³ - x}
Solution of D.E. can be given by
y1x3x=4x3x(1x2)1x(x21)dxy \cdot \frac{1}{x^3 - x} = \int \frac{4x^3}{x(1 - x^2)} \cdot \frac{1}{x(x^2 - 1)} \,dx
$$$\frac{y}{x^3 - x} = \int \frac{-4x}{(x^2 - 1)^2} ,dx \frac{y}{x^3 - x} = \frac{2}{x^2 - 1} + catx=2,y=2 at x = 2, y = -2 \frac{-2}{6} = \frac{2}{3} + c ⇒ c = -1at atx = 3 ⇒ \frac{y}{24} = \frac{2}{8} - 1 ⇒ y = -18$