Question
Mathematics Question on Differential equations
Let y = y(x) be the solution of the differential equation
x(1−x2)dxdy+(3x2y−y−4x3)=0,x>1
with y(2) = –2. Then y(3) is equal to
A
-18
B
-12
C
-6
D
-3
Answer
-18
Explanation
Solution
The correct answer is (A) : -18
dxdy+x(1−x2)y(3x2−1)=x(1−x2)4x3
IF=e∫x−x33x2−1dx=e−ln∣x3−x∣=e−ln(x3−x)
=x3−x1
Solution of D.E. can be given by
y⋅x3−x1=∫x(1−x2)4x3⋅x(x2−1)1dx
⇒ $$$\frac{y}{x^3 - x} = \int \frac{-4x}{(x^2 - 1)^2} ,dx⇒\frac{y}{x^3 - x} = \frac{2}{x^2 - 1} + catx=2,y=−2\frac{-2}{6} = \frac{2}{3} + c ⇒ c = -1atx = 3 ⇒ \frac{y}{24} = \frac{2}{8} - 1 ⇒ y = -18$