Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y=y(x) be the solution curve of the differential equation dydx=yx(1+xy2(1+logex)),x>0,y(1)=3\frac{d y}{d x}=\frac{y}{x}\left(1+x y^2\left(1+\log _e x\right)\right), x>0, y(1)=3 Then y2(x)9\frac{y^2(x)}{9} is equal to :

A

x252x3(2+logex3)\frac{x^2}{5-2 x^3\left(2+\log _e x^3\right)}

B

x23x3(1+logex2)2\frac{x^2}{3 x^3\left(1+\log _e x^2\right)-2}

C

x273x3(2+logex2)\frac{x^2}{7-3 x^3\left(2+\log _e x^2\right)}

D

x22x3(2+logex3)3\frac{x^2}{2 x^3\left(2+\log _e x^3\right)-3}

Answer

x252x3(2+logex3)\frac{x^2}{5-2 x^3\left(2+\log _e x^3\right)}

Explanation

Solution

dxdy​−xy​=y3(1+loge​x)
y31​dxdy​−xy21​=1+loge​x
Let −y21​=t⇒y32​dxdy​=dxdt​
∴dxdt​+x2t​=2(1+loge​x)
I.F. =e∫x2​dx=x2
y2−x2​=32​((1+loge​x)x3−3x3​)+C
y(1)=3
9y2​=5−2x3(2+loge​x3)x2​
OR
xdy=ydx+x3(1+loge​x)dx
y3xdy−ydx​=x(1+loge​x)dx
−yx​d(yx​)=x2(1+loge​x)dx
−(yx​)2=2∫x2(1+loge​x)dx