Question
Mathematics Question on Differential equations
Let y=y(x) be the solution curve of the differential equation dxdy=xy(1+xy2(1+logex)),x>0,y(1)=3 Then 9y2(x) is equal to :
A
5−2x3(2+logex3)x2
B
3x3(1+logex2)−2x2
C
7−3x3(2+logex2)x2
D
2x3(2+logex3)−3x2
Answer
5−2x3(2+logex3)x2
Explanation
Solution
dxdy−xy=y3(1+logex)
y31dxdy−xy21=1+logex
Let −y21=t⇒y32dxdy=dxdt
∴dxdt+x2t=2(1+logex)
I.F. =e∫x2dx=x2
y2−x2=32((1+logex)x3−3x3)+C
y(1)=3
9y2=5−2x3(2+logex3)x2
OR
xdy=ydx+x3(1+logex)dx
y3xdy−ydx=x(1+logex)dx
−yxd(yx)=x2(1+logex)dx
−(yx)2=2∫x2(1+logex)dx