Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=y(x)y = y(x) be the solution curve of the differential equation secydydx+2xsiny=x3cosy,\sec y \frac{dy}{dx} + 2x \sin y = x^3 \cos y, y(1)=0y(1) = 0. Then y(3)y\left(\sqrt{3}\right) is equal to:

A

π3\frac{\pi}{3}

B

π6\frac{\pi}{6}

C

π4\frac{\pi}{4}

D

π12\frac{\pi}{12}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Given the differential equation: sec2ydydx+2xsinysecy=x3cosy.\sec^2 y \frac{dy}{dx} + 2x \sin y \sec y = x^3 \cos y.

Rearranging terms: sec2ydydx+2xtany=x3.\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3. Let t=tanyt = \tan y.

Then: sec2ydydx=dtdx.\sec^2 y \frac{dy}{dx} = \frac{dt}{dx}.

Substituting into the equation: dtdx+2xt=x3.\frac{dt}{dx} + 2xt = x^3.

This is a linear first-order differential equation.

To solve it, we find the integrating factor (IF): IF=e2xdx=ex2.\text{IF} = e^{\int 2x dx} = e^{x^2}.

Multiplying the entire equation by the integrating factor: ex2dtdx+2xtex2=x3ex2.e^{x^2} \frac{dt}{dx} + 2x t e^{x^2} = x^3 e^{x^2}.

This simplifies to: ddx(tex2)=x3ex2.\frac{d}{dx} (t e^{x^2}) = x^3 e^{x^2}.

Integrating both sides: tex2=x3ex2dx.t e^{x^2} = \int x^3 e^{x^2} \, dx.

Using the substitution z=x2,dz=2xdxz = x^2, \, dz = 2x dx: x3ex2dx=12zezdz.\int x^3 e^{x^2} \, dx = \frac{1}{2} \int z e^z \, dz.

Integrating by parts: zezdz=ez(z1),\int z e^z \, dz = e^z (z - 1),

so: 12zezdz=12ex2(x21).\frac{1}{2} \int z e^z \, dz = \frac{1}{2} e^{x^2} (x^2 - 1).

Thus: tex2=12ex2(x21)+C.t e^{x^2} = \frac{1}{2} e^{x^2} (x^2 - 1) + C.

Dividing by ex2e^{x^2}: t=12(x21)+Cex2.t = \frac{1}{2} (x^2 - 1) + C e^{-x^2}.

Recalling that t=tanyt = \tan y,

we have: tany=12(x21)+Cex2.\tan y = \frac{1}{2} (x^2 - 1) + C e^{-x^2}.

Using the initial condition y(1)=0y(1) = 0: tan0=12(121)+Ce12,\tan 0 = \frac{1}{2} (1^2 - 1) + C e^{-1^2}, 0=0+Ce1    C=0.0 = 0 + C e^{-1} \implies C = 0.

Thus: tany=12(x21).\tan y = \frac{1}{2} (x^2 - 1).

To find y(3)y(\sqrt{3}): tany=12((3)21)=12(31)=1.\tan y = \frac{1}{2} ((\sqrt{3})^2 - 1) = \frac{1}{2} (3 - 1) = 1.

Therefore: y=tan1(1)=π4.y = \tan^{-1} (1) = \frac{\pi}{4}.

Therefore: π4.\frac{\pi}{4}.