Solveeit Logo

Question

Mathematics Question on Area between Two Curves

Let y=y(x)y = y(x) be the solution curve of the differential equation
dydx+2x2+11x+13x3+6x2+11x+6y=(x+3)(x+1),x>1.\frac{dy}{dx} + \frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6}y = (x+3)(x+1), \quad x > -1.
which passes through the point (0,1)(0, 1). Then y(1)y(1) is equal to

A

12\frac{1}{2}

B

32\frac{3}{2}

C

52\frac{5}{2}

D

72\frac{7}{2}

Answer

32\frac{3}{2}

Explanation

Solution

dydx+2x2+11x+13x3+6x2+11x+6y=(x+3)(x+1),x>1.\frac{dy}{dx} + \frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6}y = (x+3)(x+1), \quad x > -1.
Integrating factor I.F

e2x2+11x+13x3+6x2+11x+6dxe^{\int \frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6} \, dx}

Let 22+11x+13(x+1)(x+2)(x+3)=Ax+1+Bx+2+Cx+3\frac{22 + 11x + 13}{(x+1)(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3}
A=2,B=1,C=1A = 2, B = 1, C = –1

I.F.=e(2lnx+1+lnx+2lnx+3)I.F. = e^{(2\ln|x+1|+\ln|x+2|-\ln|x+3|)}

(x+1)2(x+2)x+3\frac{(x+1)^2 \cdot (x+2)}{x+3}
Solution of differential equation

y(x+1)2(x+2)x+3=(x+1)(x+2)dxy \cdot \frac{(x+1)^2(x+2)}{x+3} = \int (x+1)(x+2) \, dx

y(x+1)2(x+2)x+3=x33+3x22+2x+cy \cdot \frac{(x+1)^2(x+2)}{x+3} = \frac{x^3}{3} + \frac{3x^2}{2} + 2x + c
Curve passes through (0, 1)

1×1×23=0+cc=231 \times 1 \times \frac{2}{3} = 0 + c \Rightarrow c = \frac{2}{3}

So, y(1)=13+32+2+23÷22×34y(1) = \frac{1}{3} + \frac{3}{2} + 2 + \frac{2}{3} \div \frac{2^2 \times 3}{4}
=32=\frac{3}{2}
So, the correct option is (B): 32\frac{3}{2}