Question
Mathematics Question on Area between Two Curves
Let y=y(x) be the solution curve of the differential equation
dxdy+x3+6x2+11x+62x2+11x+13y=(x+3)(x+1),x>−1.
which passes through the point (0,1). Then y(1) is equal to
A
21
B
23
C
25
D
27
Answer
23
Explanation
Solution
dxdy+x3+6x2+11x+62x2+11x+13y=(x+3)(x+1),x>−1.
Integrating factor I.F
e∫x3+6x2+11x+62x2+11x+13dx
Let (x+1)(x+2)(x+3)22+11x+13=x+1A+x+2B+x+3C
A=2,B=1,C=–1
I.F.=e(2ln∣x+1∣+ln∣x+2∣−ln∣x+3∣)
x+3(x+1)2⋅(x+2)
Solution of differential equation
y⋅x+3(x+1)2(x+2)=∫(x+1)(x+2)dx
y⋅x+3(x+1)2(x+2)=3x3+23x2+2x+c
Curve passes through (0, 1)
1×1×32=0+c⇒c=32
So, y(1)=31+23+2+32÷422×3
=23
So, the correct option is (B): 23