Question
Mathematics Question on Differential equations
Let y = y(x) be the solution curve of the differential equation
sin(2x2)loge(tan(x2))dy+(4xy−42xsin(x2−4π))dx=0,0<x<2π
which passes through the point (6π,1). Then ∣y(3π)∣
is equal to _______.
Answer
The correct answer is 1
dxdy+y(sin(2x2)ln(tan(x2))4x)=sin(2x2)ln(tan(x2))42xsin(x2−4π)
I.F.=e∫sin(2x2)ln(tan(x2))4xdx
=eIn∣In(tanx2)=In(tanx2)
∴$$\int d(y \ln(\tan(x^2))) = \int \frac{4\sqrt{2}x\sin\left(x^2 - \frac{\pi}{4}\right)}{\sin(2x^2)} \,dx
⇒ yln(tan(x2))=lncsc2(x)−cot(x)sec2(x)+tan(x)+C
In(31)=In(2−333)+C
e=ln(31)−ln(2−33)
For y(3π)
yln(3)=ln23+312+23+ln(31)−ln(233)
= ln(2+3)+ln(31)+ln(31)−ln(2−33)
⇒y In3= In(31)
⇒2y In3=−21 In 3
⇒ y = 1
∴∣y(3π)∣
= 1