Solveeit Logo

Question

Mathematics Question on Differential equations

Let y = y(x) be the solution curve of the differential equation
sin(2x2)loge(tan(x2))dy+(4xy42xsin(x2π4))dx=0,0<x<π2\sin(2x^2) \log_e(\tan(x^2)) \,dy + (4xy - 4\sqrt{2}x\sin(x^2 - \frac{\pi}{4})) \,dx = 0, \quad 0 < x < \sqrt{\frac{\pi}{2}}
which passes through the point (π6,1)(\sqrt{\frac{π}{6}},1). Then y(π3)|y(\sqrt{\frac{π}{3}})|
is equal to _______.

Answer

The correct answer is 1
dydx+y(4xsin(2x2)ln(tan(x2)))=42xsin(x2π4)sin(2x2)ln(tan(x2))\frac{dy}{dx} + y\left(\frac{4x}{\sin(2x^2) \ln(\tan(x^2))}\right) = \frac{4\sqrt{2}x\sin\left(x^2 - \frac{\pi}{4}\right)}{\sin(2x^2) \ln(\tan(x^2))}
I.F.=e4xsin(2x2)ln(tan(x2))dxI.F. = e^{\int\frac{4x}{\sin(2x^2) \ln(\tan(x^2))} \,dx}
=eInIn(tanx2)=In(tanx2)= e^{In|In(\tan x^2)} = In(\tan x^2)
∴$$\int d(y \ln(\tan(x^2))) = \int \frac{4\sqrt{2}x\sin\left(x^2 - \frac{\pi}{4}\right)}{\sin(2x^2)} \,dx
yln(tan(x2))=lnsec2(x)+tan(x)csc2(x)cot(x)+Cy \ln(\tan(x^2)) = \ln\left|\frac{\sec^2(x) + \tan(x)}{\csc^2(x) - \cot(x)}\right| + C
In(13)=In(3323)+CIn (\frac{1}{\sqrt3}) = In(\frac{\frac{3}{\sqrt3}}{2-\sqrt3})+C
e=ln(13)ln(323)e = \ln\left(\frac{1}{\sqrt{3}}\right) - \ln\left(\frac{\sqrt3}{2-\sqrt3}\right)
For y(π3)y(\sqrt{\frac{π}{3}})
yln(3)=ln2+3232+13+ln(13)ln(323)y \ln(\sqrt{3}) = \ln\left|\frac{2 + \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{3}}}\right| + \ln\left(\frac{1}{\sqrt{3}}\right) - \ln\left(\frac{\sqrt{3}}{2\sqrt{3}}\right)
= ln(2+3)+ln(13)+ln(13)ln(323)\ln(2 + \sqrt{3}) + \ln\left(\frac{1}{\sqrt{3}}\right) + \ln\left(\frac{1}{\sqrt{3}}\right) - \ln\left(\frac{\sqrt3}{2-\sqrt3}\right)
y In3= In(13)⇒ y\ In \sqrt3 = \ In (\frac{1}{\sqrt3})
y2 In3=12 In 3⇒ \frac{y}{2}\ In 3 = -\frac{1}{2} \ In\ 3
⇒ y = 1
y(π3)∴ |y(\sqrt{\frac{π}{3}})|
= 1