Solveeit Logo

Question

Mathematics Question on types of differential equations

Let y=y(t)y=y(t) be a solution of the differential equationdydt+αy=γeβt\frac{d y}{d t}+\alpha y=\gamma e^{-\beta t}where, α>0,β>0\alpha > 0, \beta>0 and γ>0\gamma > 0 Then limty(t)\displaystyle\lim _{t \rightarrow \infty} y(t)

A

is1-1

B

is 0

C

is 1

D

does not exist

Answer

is 0

Explanation

Solution

The correct answer is (B) : is 0
dtdy​+αy=γe−βt
I.F. =e∫αdt=eαt
Solution ⇒y⋅eαt=∫γc−βT⋅cαtdt
⇒yeαt=γ(α−β)e(α−β)t​+c
⇒y=eβt(α−β)γ​+eαtc​
So, t→∞lim​y(t)=∞γ​+∞c​=0