Solveeit Logo

Question

Question: Let \(y=y\left( x \right)\) be the solution of the differential equation \(\dfrac{dy}{dx}+2y=f\left(...

Let y=y(x)y=y\left( x \right) be the solution of the differential equation dydx+2y=f(x)\dfrac{dy}{dx}+2y=f\left( x \right), where f\left( x \right)=\left\\{ \begin{matrix} 1,\text{ }x\in \left( 0,1 \right) \\\ 0,\text{ otherwise} \\\ \end{matrix} \right.
If y(0)=0y\left( 0 \right)=0 then y(32)y\left( \dfrac{3}{2} \right) is

Explanation

Solution

We solve this question by first comparing the given differential equation with dydx+yP(x)=Q(x)\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right). Then we solve it by multiplying the equation with integrating factor by finding the integrating factor using the formula I.F=eP(x)dxI.F={{e}^{\int{P\left( x \right)dx}}}. Then we solve the differential equation and find the values of the function y=y(x)y=y\left( x \right) when x(0,1)x\in \left( 0,1 \right) and when x(0,1)x\notin \left( 0,1 \right). Then we substitute the value x=0x=0 in y(x)y\left( x \right) to find the value of function. Then we substitute the value x=32x=\dfrac{3}{2} in y(x)y\left( x \right) to find the value y(32)y\left( \dfrac{3}{2} \right).

Complete step-by-step answer :
Let us consider the given differential equation dydx+2y=f(x)\dfrac{dy}{dx}+2y=f\left( x \right).
As we see, it is in the form of dydx+yP(x)=Q(x)\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right).
If any differential equation is of the above form then we multiply it with an integrating factor which is given by
I.F=eP(x)dxI.F={{e}^{\int{P\left( x \right)dx}}}
Then we solve the differential equation as
y×(I.F)=yeP(x)dx=eP(x)dxQ(x)dx=(I.F)×Q(x)dxy\times \left( I.F \right)=y{{e}^{\int{P\left( x \right)dx}}}=\int{{{e}^{\int{P\left( x \right)dx}}}Q\left( x \right)}dx=\int{\left( I.F \right)\times Q\left( x \right)}dx
Here, by comparing the given differential equation with the above form of differential equation we can say that,
P(x)=2P\left( x \right)=2 and Q(x)=f(x)Q\left( x \right)=f\left( x \right)
So, now let us find the integrating factor for our given differential equation,
I.F=e2dx I.F=e2dx I.F=e2x \begin{aligned} & \Rightarrow I.F={{e}^{\int{2dx}}} \\\ & \Rightarrow I.F={{e}^{2\int{dx}}} \\\ & \Rightarrow I.F={{e}^{2x}} \\\ \end{aligned}
So, we get the solution of the differential equation as
ye2x=e2xf(x)dxy{{e}^{2x}}=\int{{{e}^{2x}}f\left( x \right)dx}
As we are given that f\left( x \right)=\left\\{ \begin{matrix} 1,\text{ }x\in \left( 0,1 \right) \\\ 0,\text{ otherwise} \\\ \end{matrix} \right., let us substitute the value of f(x)f\left( x \right) in the above solution of differential equation.
When x(0,1)x\in \left( 0,1 \right)
ye2x=e2x×1dx ye2x=e2xdx \begin{aligned} & \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 1dx} \\\ & \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}dx} \\\ \end{aligned}
Now let us consider the formula eaxdx=eaxa+c\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}+c. Using this we can write the above equation as,
ye2x=e2x2+c\Rightarrow y{{e}^{2x}}=\dfrac{{{e}^{2x}}}{2}+c
Now let us divide the above equation with e2x{{e}^{2x}}.
y=12+ce2x\Rightarrow y=\dfrac{1}{2}+c{{e}^{-2x}}
As, we are given that y=y(x)y=y\left( x \right) we can substitute it in the above equation.
y(x)=12+ce2x\Rightarrow y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}
So, we get the value of y(x)y\left( x \right) in the interval x(0,1)x\in \left( 0,1 \right) as y(x)=12+ce2xy\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}.
When x(0,1)x\notin \left( 0,1 \right)
ye2x=e2x×0dx ye2x=0dx \begin{aligned} & \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 0dx} \\\ & \Rightarrow y{{e}^{2x}}=\int{0dx} \\\ \end{aligned}
Now let us consider the formula 0dx=constant\int{0dx}=\text{constant}. Using this we can write the above equation as,
ye2x=C y=Ce2x \begin{aligned} & \Rightarrow y{{e}^{2x}}=C \\\ & \Rightarrow y=C{{e}^{-2x}} \\\ \end{aligned}
So, we get the function y(x)y\left( x \right) as
y\left( x \right)=\left\\{ \begin{matrix} \dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\\ C{{e}^{-2x}},\text{ otherwise} \\\ \end{matrix} \right.
We are given that y(0)=0y\left( 0 \right)=0.
When x=0x=0 the function is y(x)=Ce2xy\left( x \right)=C{{e}^{-2x}}. So, substituting the value x=0x=0, we get
y(0)=0=Ce2(0) Ce0=0 C=0 \begin{aligned} & \Rightarrow y\left( 0 \right)=0=C{{e}^{-2\left( 0 \right)}} \\\ & \Rightarrow C{{e}^{0}}=0 \\\ & \Rightarrow C=0 \\\ \end{aligned}
Then the function becomes y\left( x \right)=\left\\{ \begin{matrix} \dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\\ 0,\text{ otherwise} \\\ \end{matrix} \right.
As we are asked to find the value of y(32)y\left( \dfrac{3}{2} \right), let us substitute the value x=32x=\dfrac{3}{2} in the above function y(x)y\left( x \right).
As 32(0,1)\dfrac{3}{2}\notin \left( 0,1 \right), value of y(32)y\left( \dfrac{3}{2} \right) is 0.
Hence, we get the value of y(32)y\left( \dfrac{3}{2} \right) as 0.
Hence, the answer is 0.

Note : The main mistake one does is one might not check that when we are given x=0, it does not belong to the interval (0,1) and take the value of function as y(x)=12+ce2xy\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}} and find the value of c and then find the value of y(32)y\left( \dfrac{3}{2} \right). But it is wrong. Here we need to consider the function when x does not belong to (0,1).