Solveeit Logo

Question

Mathematics Question on Differential equations

Let y(x)y(x) be a solution of the differential equation (1+ex)y+yex=1(1 + e^x)y' + ye^x = 1. If y(0)=2y(0) = 2, then which of the following statements is (are) true ?

A

y(4)=0y(-4) \,= \,0

B

y(2)=0y(-2)\, =\, 0

C

y(x)y(x) has a critical point in the interval (1,0)(-1, 0)

D

y(x)y(x) has no critical point in the interval (1,0)(-1, 0)

Answer

y(x)y(x) has a critical point in the interval (1,0)(-1, 0)

Explanation

Solution

(1+ex)y+yex=1\left(1 + e^{x}\right)y' + ye^{x} =1
?d((1+ex)y)=1? d\left(\left(1 + e^{x}\right)y\right) = 1
?y(1+ex)=x+C? y\left(1 + e^{x}\right) = x + C
y(0)=2\because y\left(0\right) = 2
?2?2=C?C=4? 2 ? 2 = C ? C = 4
?y(1+ex)=x+4? y\left(1 + e^{x}\right) = x + 4
?y(4)=0,y(2)=21+e20? y\left(-4\right) = 0, y\left(-2\right) = \frac{2}{1+e^{-2}}\ne0
For critical point y' = 0
?yex=1? ye^{x} = 1
Now let g(x)=yex1=ex(x+4)1+ex1\left(x\right) = ye^{x} - 1 = \frac{e^{x}\left(x + 4\right)}{1+e^{x}}-1
g(1)=3e11+e11=3e+11<0g\left(-1\right) = \frac{3e^{-1}}{1+e^{-1}}-1 = \frac{3}{e+1}-1< 0
g(0)=21>0g\left(0\right) = 2-1 > 0
So there exists one value of x in (1,0)\left(-1, 0\right) for which g(x)=0?y=0\left(x\right) = 0 ? y' = 0
?? there exist a critical point of y(x)y\left(x\right) in (1,0)\left(-1, 0\right)