Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let y=sin1(2x1+x2),0<x<1y = \sin^{-1} \left(\frac{2x}{1+x^{2}}\right), 0 < x < 1 and 0<y<π2,0 < y < \frac{\pi}{2}, then dydx\frac{dy}{dx} is equal to

A

21+x2\frac{2}{ 1 +x^2}

B

2x1+x2\frac{2x}{ 1 +x^2}

C

21+x2 - \frac{2}{ 1 +x^2}

D

none of these

Answer

21+x2\frac{2}{ 1 +x^2}

Explanation

Solution

Put x=tanθ,2x1+x2=2tanθ1+tan2θ=sin2θx =\tan\theta, \frac{2x}{1+x^{2}} = \frac{2\tan \theta}{1+\tan^{2} \theta} = \sin2 \theta y=sin1(sin2θ)=2θ=2tan1x\therefore y = \sin^{-1} \left(\sin2 \theta \right) = 2 \theta = 2 \tan^{-1} x dydx=21+x2\therefore \frac{dy}{dx} = \frac{2}{1+x^{2}}