Solveeit Logo

Question

Mathematics Question on Differential equations

Let y=loge(1x21+x2),1<x<1y = \log_e \left( \frac{1 - x^2}{1 + x^2} \right), -1 < x < 1. Then at x=12x = \frac{1}{2}, the value of 225(yy)225(y' - y'') is equal to

A

732

B

746

C

742

D

736

Answer

736

Explanation

Solution

**Given: **y=loge(1x21+x2)y = \log_e \left( \frac{1 - x^2}{1 + x^2} \right)

Step 1. First derivative dydx\frac{dy}{dx}:dydx=y=4x1x4\frac{dy}{dx} = y' = \frac{-4x}{1 - x^4}

Step 2. Second derivative d2ydx2\frac{d^2y}{dx^2}:y=4(1+3x4)(1x4)2y'' = \frac{-4(1 + 3x^4)}{(1 - x^4)^2}

Step 3. Calculate yyy' - y'' at x=12x = \frac{1}{2}: yy=4x1x4+4(1+3x4)(1x4)2y' - y'' = \frac{-4x}{1 - x^4} + \frac{4(1 + 3x^4)}{(1 - x^4)^2}

Step 4. Substitute x=12x = \frac{1}{2} and simplify to find 225(yy)225(y' - y''): After calculations: 225(yy)=736225(y' - y'') = 736

The Correct Answer is:736