Solveeit Logo

Question

Question: Let \[y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3}\]then A....

Let y=(sin1x)3+(cos1x)3y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3}then
A.Min y=π38y = \dfrac{{{\pi ^3}}}{8}
B.Min y=π332y = \dfrac{{{\pi ^3}}}{{32}}
C.Max y=7π38y = \dfrac{{7{\pi ^3}}}{8}
D.Max y=7π332y = \dfrac{{7{\pi ^3}}}{{32}}

Explanation

Solution

Hint : In this question a trigonometric function is given so first we try to reduce the given trigonometric function in simpler form, then we will put the maximum value of the sin1x{\sin ^{ - 1}}x in the function to find the minimum value and minimum value of the sin1x{\sin ^{ - 1}}x in the function to find the maximum value.

Complete step-by-step answer :
Given the trigonometric functiony=(sin1x)3+(cos1x)3(i)y = {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} - - (i)
We know the cubic formula is given as a3+b3=(a+b)33ab(a+b){a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)
Hence by using the cubic formula we can write the function (i) as
y=(sin1x+cos1x)33(sin1x)(cos1x)(sin1x+cos1x)y = {\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)
Now as we know the trigonometric function sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}, hence we can further write the trigonometric function as
y=(π2)33(sin1x)(cos1x)(π2)y = {\left( {\dfrac{\pi }{2}} \right)^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)
By further solving this function, we get
y=π833(sin1x)(cos1x)(π2)y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {{{\cos }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)
Now as we the trigonometric function cos1x=π2sin1x{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x, hence by using this we can write the function as
y=π833(sin1x)(π2sin1x)(π2)y = {\dfrac{\pi }{8}^3} - 3\left( {{{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right)\left( {\dfrac{\pi }{2}} \right)
Hence by further solving this, we get

y=π833π24sin1x+3π2(sin1x)2 =3π2(π212π2sin1x+(sin1x)2) =3π2((sin1x)2π2sin1x+π212) \Rightarrow y = {\dfrac{\pi }{8}^3} - \dfrac{{3{\pi ^2}}}{4}{\sin ^{ - 1}}x + \dfrac{{3\pi }}{2}{\left( {{{\sin }^{ - 1}}x} \right)^2} \\\ = \dfrac{{3\pi }}{2}\left( {\dfrac{{{\pi ^2}}}{{12}} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + {{\left( {{{\sin }^{ - 1}}x} \right)}^2}} \right) \\\ = \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{{12}}} \right) \\\

Now we know the basic square formula is given as (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, so by using this formula
y=3π2((sin1xπ4)2+π248)y = \dfrac{{3\pi }}{2}\left( {{{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right)
Now to find the minimum value substitute sin1x=π4{\sin ^{ - 1}}x = \dfrac{\pi }{4} (to make square terms zero), hence we get

ymin=3π2((π4π4)2+π248) =3π2(0+π248) =3π2×π248 =π332 \Rightarrow {y_{\min }} = \dfrac{{3\pi }}{2}\left( {{{\left( {\dfrac{\pi }{4} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\\ = \dfrac{{3\pi }}{2}\left( {0 + \dfrac{{{\pi ^2}}}{{48}}} \right) \\\ = \dfrac{{3\pi }}{2} \times \dfrac{{{\pi ^2}}}{{48}} \\\ = \dfrac{{{\pi ^3}}}{{32}} \\\

Hence the minimum value of the function y=π332y = \dfrac{{{\pi ^3}}}{{32}}
Now to find the maximum value substitute sin1x=π2{\sin ^{ - 1}}x = - \dfrac{\pi }{2}(to make square terms maximum), hence we get

ymax=3π2((π2π4)2+π248) =3π2((3π4)2+π248) =3π2(9π216+π248) =3π2×27π2+π248 =3π2×28π248 =28π332 =7π38 \Rightarrow {y_{\max }} = \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\\ = \dfrac{{3\pi }}{2}\left( {{{\left( { - \dfrac{{3\pi }}{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\\ = \dfrac{{3\pi }}{2}\left( {\dfrac{{9{\pi ^2}}}{{16}} + \dfrac{{{\pi ^2}}}{{48}}} \right) \\\ = \dfrac{{3\pi }}{2} \times \dfrac{{27{\pi ^2} + {\pi ^2}}}{{48}} \\\ = \dfrac{{3\pi }}{2} \times \dfrac{{28{\pi ^2}}}{{48}} \\\ = \dfrac{{28{\pi ^3}}}{{32}} \\\ = \dfrac{{7{\pi ^3}}}{8} \\\

Hence the maximum value of the function is, y=7π38y = \dfrac{{7{\pi ^3}}}{8}
So from the multiple options given we can say option B and C both are correct since
Minimum value of the given function is given as:y=π332y = \dfrac{{{\pi ^3}}}{{32}}
Maximum value of the given function is given as:y=7π38y = \dfrac{{7{\pi ^3}}}{8}
So, the correct answer is “Option B AND C”.

Note : If the value of the function is increasing regularly then, the function is said to be Monotonically Increasing and the same goes for the monotonically decreasing function. Here, we got the maximum as well as the minimum value of the function at the calculated point of ‘x’.