Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let y=f(x)=sin3(π3(cos(π32(4x3+5x2+1)32)))y=f(x)=\sin ^3\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{\frac{3}{2}}\right)\right)\right) Then, at x=1x=1

A

2y+3π2y=02 y^{\prime}+\sqrt{3} \pi^2 y=0

B

2y3π2y=0\sqrt{2} y^{\prime}-3 \pi^2 y=0

C

2y+3π2y=02 y^{\prime}+3 \pi^2 y=0

D

y+3π2y=0y^{\prime}+3 \pi^2 y=0

Answer

2y+3π2y=02 y^{\prime}+3 \pi^2 y=0

Explanation

Solution

y=sin3(π/3cosg(x))
g(x)=32​π​(−4x3+5x2+1)3/2
g(1)=2π/3
y′=3sin2(3π​cosg(x))×cos(3π​cosg(x))×3π​(−sing(x))g′(x)
y′(1)=3sin2(−6π​)⋅cos(6π​)⋅3π​(−sin32π​)g′(1)
g′(x)=32​π​(−4x3+5x2+1)1/2(−12x2+10x)
g′(1)=22​π​(2​)(−2)=−π
y′(1)=43​⋅23​​⋅3π​(2−3​​)(−π)=163π2​
y(1)=sin3(π/3cos2π/3)=−81​
2y′(1)+3π2y(1)=0