Question
Mathematics Question on Application of derivatives
Let y=f(x)=sin3(3π(cos(32π(−4x3+5x2+1)23))) Then, at x=1
A
2y′+3π2y=0
B
2y′−3π2y=0
C
2y′+3π2y=0
D
y′+3π2y=0
Answer
2y′+3π2y=0
Explanation
Solution
y=sin3(π/3cosg(x))
g(x)=32π(−4x3+5x2+1)3/2
g(1)=2π/3
y′=3sin2(3πcosg(x))×cos(3πcosg(x))×3π(−sing(x))g′(x)
y′(1)=3sin2(−6π)⋅cos(6π)⋅3π(−sin32π)g′(1)
g′(x)=32π(−4x3+5x2+1)1/2(−12x2+10x)
g′(1)=22π(2)(−2)=−π
y′(1)=43⋅23⋅3π(2−3)(−π)=163π2
y(1)=sin3(π/3cos2π/3)=−81
2y′(1)+3π2y(1)=0