Solveeit Logo

Question

Mathematics Question on integral

Let y=f(x)y = f(x) be a thrice differentiable function in (5,5)(-5, 5). Let the tangents to the curve y=f(x)y = f(x) at (1,f(1))(1, f(1)) and (3,f(3))(3, f(3)) make angles π6\frac{\pi}{6} and π4\frac{\pi}{4}, respectively, with the positive x-axis. If 2131((f(t))2+1)f(t)dt=α+β32 \int_{\frac{1}{\sqrt{3}}}^{1} \left( \left( f'(t) \right)^2 + 1 \right) f''(t) \, dt = \alpha + \beta \sqrt{3} where α\alpha, β\beta are integers, then the value of α+β\alpha + \beta equals

A

-14

B

26

C

-16

D

36

Answer

26

Explanation

Solution

From the tangents, we find:

f(1)=13,f(3)=1.f'(1) = \frac{1}{\sqrt{3}}, \quad f'(3) = 1.

Assume f(t)=tf'(t) = t (consistent with the slopes), then f(t)=1f''(t) = 1.

Substitute into the integral:

2131(t2+1)dt=α+β3.2 \int_{\frac{1}{\sqrt{3}}}^{1} \left( t^2 + 1 \right) dt = \alpha + \beta \sqrt{3}.

α+β3=27(4310273)=36103.\alpha + \beta \sqrt{3} = 27 \left( \frac{4}{3} - \frac{10}{27} \sqrt{3} \right) = 36 - 10\sqrt{3}.

Here α=36,β=10\alpha = 36, \beta = -10.

α+β=3610=26\alpha + \beta = 36 - 10 = 26

Compute the integral to find α+β=26\alpha + \beta = 26.