Solveeit Logo

Question

Question: Let y=f(x) be a quadratic function with f '(2)=1. Find the value of the integral \( \int\limits_{2 -...

Let y=f(x) be a quadratic function with f '(2)=1. Find the value of the integral 2π2+πf(x)sin(x22)dx\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx}

Explanation

Solution

Hint : In this question, we need to evaluate the value of the definite integral 2π2+πf(x)sin(x22)dx\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} . For this, we will use the property of the quadratic equation and the follow the integral by parts method.

Complete step-by-step answer :
The standard quadratic equation is given as: f(x)=ax2+bx+cf(x) = a{x^2} + bx + c
Differentiating the standard quadratic equation, we get: f(x)=ax+bf'(x) = ax + b
Again, differentiating the equation, we get: f(x)=af''(x) = a
So, we can say that the double differentiation of the quadratic equation yields a constant value.
Now, following the integral by parts to integrate the integral 2π2+πf(x)sin(x22)dx\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} where, f(x) is considered to be the first function and sin(x22)\sin \left( {\dfrac{{x - 2}}{2}} \right) is considered to be the second function.
2π2+πf(x)sin(x22)dx=f(x)×sin(x22)dx(ddx(f(x))×sin(x22)dx)dx =f(x)×cos(x22)(12)f(x)×(cos(x22)(12))dx =2f(x)cos(x22)+2[f(x)cos(x22)dx]  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = f(x) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} - \int {\left( {\dfrac{d}{{dx}}\left( {f(x)} \right) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} \\\ = f(x) \times \dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - \int {f'(x) \times } \left( {\dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} \right)dx \\\ = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {\int {f'(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right] \\\
Again, applying the integral by parts method on the above equation by considering f’(x) as the first function and cos(x22)\cos \left( {\dfrac{{x - 2}}{2}} \right) as the second function, we get
2π2+πf(x)sin(x22)dx=2f(x)cos(x22)+2[f(x)cos(x22)dx(ddx(f(x))×cos(x22)dx)dx] =2f(x)cos(x22)+2f(x)×sin(x22)(12)2f(x)×sin(x22)(12)dx  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {f'(x)\int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx - \int {\left( {\dfrac{d}{{dx}}\left( {f'(x)} \right) \times \int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} } } \right] \\\ = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2f'(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - 2\int {f''(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} dx \\\
As, the double differentiation of the quadratic equation, is given by f(x)=af''(x) = a so, we can take the constant term out of the integral part.
2π2+πf(x)sin(x22)dx=2f(x)cos(x22)+4f(x)sin(x22)+4f(x)cos(x22)(12) =2f(x)cos(x22)+4f(x)sin(x22)+8f(x)cos(x22)  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 4f''(x)\dfrac{{\cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\\ = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) \\\
According to the question, f’(2)=1 and lower and upper limits are (2π)\left( {2 - \pi } \right) and (2+π)\left( {2 + \pi } \right) so, substituting the value in the above equation, we get
2π2+πf(x)sin(x22)dx=2f(x)cos(x22)+4f(x)sin(x22)+8f(x)cos(x22)2π2+π\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = \left| { - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)} \right|_{2 - \pi }^{2 + \pi }
The upper limit is calculated as:

UL=(2f(2+π)cos(2+π22)+4f(2+π)sin(2+π22)+8f(2+π)cos(2+π22)) =(2f(2+π)cosπ2+4f(2+π)sinπ2+8f(2+π)cosπ2) =4f(2+π)  UL = \left( { - 2f(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 4f'(2 + \pi )\sin \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 8f''(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right)} \right) \\\ = \left( { - 2f(2 + \pi )\cos \dfrac{\pi }{2} + 4f'(2 + \pi )\sin \dfrac{\pi }{2} + 8f''(2 + \pi )\cos \dfrac{\pi }{2}} \right) \\\ = 4f'(2 + \pi ) \\\

Similarly, the lower limit is:

LL=(2f(2π)cos(2π22)+4f(2π)sin(2π22)+8f(2π)cos(2π22)) =(2f(2π)cosπ2+4f(2π)sin(π2)+8f(2π)cos(π2)) =4f(2π)  LL = \left( { - 2f(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 4f'(2 - \pi )\sin \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right)} \right) \\\ = \left( { - 2f(2 - \pi )\cos \dfrac{\pi }{2} + 4f'(2 - \pi )\sin \left( {\dfrac{{ - \pi }}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{ - \pi }}{2}} \right)} \right) \\\ = - 4f'(2 - \pi ) \\\

Hence, we can write
2π2+πf(x)sin(x22)dx=ULLL =4f(2+π)+4f(2π)  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = UL - LL \\\ = 4f'(2 + \pi ) + 4f'(2 - \pi ) \\\

Substituting the value of f’(x)=ax+b in the above equation, we get

2π2+πf(x)sin(x22)dx=4f(2+π)+4f(2π) =4[a(2+π)+b+(a(2π)+b)] =4(2a+aπ+b+2aaπ+b) =4(4a+2b) =8(2a+b)  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 4f'(2 + \pi ) + 4f'(2 - \pi ) \\\ = 4\left[ {a(2 + \pi ) + b + \left( {a(2 - \pi ) + b} \right)} \right] \\\ = 4\left( {2a + a\pi + b + 2a - a\pi + b} \right) \\\ = 4\left( {4a + 2b} \right) \\\ = 8(2a + b) \\\

Substituting the value of the x as 2 in the equation f(x)=ax+bf'(x) = ax + b , we get
f(x)=ax+b f(2)=2a+b =1  f'(x) = ax + b \\\ f'(2) = 2a + b \\\ = 1 \\\
So, the above equation can be written as:

2π2+πf(x)sin(x22)dx=8×1 =8  \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 8 \times 1 \\\ = 8 \\\

Hence, the value of the definite integral 2π2+πf(x)sin(x22)dx\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} is 8.

Note : Students should be careful while considering the values of the first and the second function by following the ILATE rule which is expanded as Inverse, Logarithmic, Algebraic, Trigonometric and Exponential. The function which comes first in ILATE should be taken as the first function.