Solveeit Logo

Question

Question: Let \(y=f\left( x \right)\) be a function defined parametrically by \(x=2t-\left| t-1 \right|\)and \...

Let y=f(x)y=f\left( x \right) be a function defined parametrically by x=2tt1x=2t-\left| t-1 \right|and y=2t2+tty=2{{t}^{2}}+t\left| t \right| then ff is
A. continuous at x=-1
B. continuous at x=2
C. differentiable at x=1
D. not differentiable at x=2

Explanation

Solution

Hint: First and foremost break x, y in the possible intervals, then gets a relation between them and then find continuity and check differentiability.

Complete step-by-step answer:
In the question, we are given parametric equation of x and y,
x=2tt1x=2t-\left| t-1 \right|
y=2t2+tty=2{{t}^{2}}+t\left| t \right|
Now let’s break or divide the values of x and y in intervals given below,
x=2t(1t),t<0 x=3t1,t<0  x=2t(1t),0t1 x=3t1,0t1  x=2t(t1),t>1 x=t+1,t>1  y=2t2t2,t<0 y=t2,t<0  y=2t2+t2,0t1 y=3t2,0t1  y=2t2+t2,t>1 y=3t2,t>1 \begin{aligned} & x=2t-(1-t),t<0 \\\ & x=3t-1,t<0 \\\ & \\\ & x=2t-(1-t),0\le t\le 1 \\\ & x=3t-1,0\le t\le 1 \\\ & \\\ & x=2t-(t-1),t>1 \\\ & x=t+1,t>1 \\\ & \\\ & y=2{{t}^{2}}-{{t}^{2}},t<0 \\\ & y={{t}^{2}},t<0 \\\ & \\\ & y=2{{t}^{2}}+{{t}^{2}},0\le t\le 1 \\\ & y=3{{t}^{2}},0\le t\le 1 \\\ & \\\ & y=2{{t}^{2}}+{{t}^{2}},t>1 \\\ & y=3{{t}^{2}},t>1 \\\ \end{aligned}
So now considering the intervals we will find the relation of x and y in the above interval,
For t<0t<0,
x=3t1 t=x+13 y=t2=(x+13)2=(x+1)29 \begin{aligned} & x=3t-1 \\\ & \Rightarrow t=\dfrac{x+1}{3} \\\ & y={{t}^{2}}={{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{9} \\\ \end{aligned}
For 0t10\le t\le 1,
x=3t1 t=x+13 y=3t2=3(x+13)2=(x+1)23 \begin{aligned} & x=3t-1 \\\ & \Rightarrow t=\dfrac{x+1}{3} \\\ & y=3{{t}^{2}}=3{{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\\ \end{aligned}
For t>1t>1,
x=t+1 t=x1 y=3t2=3(x1)2 \begin{aligned} & x=t+1 \\\ & \Rightarrow t=x-1 \\\ & y=3{{t}^{2}}=3{{\left( x-1 \right)}^{2}} \\\ \end{aligned}
Now summarizing the equation of y and x,
We get,
y=(x+1)29y=\dfrac{{{\left( x+1 \right)}^{2}}}{9} for x<1x<-1 (or t>0t>0).
y=(x+1)23y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} for 1x2-1\le x\le 2 (or 0t10\le t\le 1).
y=3(x1)2y=3{{\left( x-1 \right)}^{2}} for x>2x>2 (or t>1t>1).
Now consider the point at x=1x=-1.
We will find left hand limit of y,
So,
x=1 y=(x+1)29=0 \begin{aligned} & x=-{{1}^{-}} \\\ & y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}=0 \\\ \end{aligned}
So the left hand limit is 0.
We will find right hand limit of y,
So,
x=1+ y=(x+1)23=0 \begin{aligned} & x=-{{1}^{+}} \\\ & y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=0 \\\ \end{aligned}
So the right hand limit is 0.
Now consider the point at x=2x=2,
We will find Right hand limit of y,
So,
x2+ y=3(x1)2=3×12=3 \begin{aligned} & x\to {{2}^{+}} \\\ & y=3{{\left( x-1 \right)}^{2}}=3\times {{1}^{2}}=3 \\\ \end{aligned}
We will find left hand limit of y,
So,
x2 y=(x+1)23=323=3 \begin{aligned} & x\to {{2}^{-}} \\\ & y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=\dfrac{{{3}^{2}}}{3}=3 \\\ \end{aligned}
So in the cases of x=1x=-1and x=2x=2, both the left hand limit and right hand limit are the same.
Here y is continuous at -1 and 2.
At x=1x=1,
We will directly tell that it is continuous and differentiable as it is a polynomial function and unlike the other two points where we had to consider two polynomial functions.
As we already checked the continuity of x=2x=2, we will check its left and right hand derivative.
So,
x=2 y=(x+1)23 y=2(x+1)23=2(2+1)3=2 \begin{aligned} & x={{2}^{-}} \\\ & y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\\ & y'=\dfrac{2{{\left( x+1 \right)}^{2}}}{3}=\dfrac{2\left( 2+1 \right)}{3}=2 \\\ \end{aligned}
Here the left hand derivative is 2.
So, at x=2+x={{2}^{+}}
y=3(x1)2 y=6(x1)=6(21)=6 \begin{aligned} & y=3{{\left( x-1 \right)}^{2}} \\\ & y'=6\left( x-1 \right)=6(2-1)=6 \\\ \end{aligned}
Here the right hand derivative is 6.

Note: In these types of problems students always have problems finding left hand and right hand derivatives and limits. They make mistakes in left hand limit and right hand limit calculation.