Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

Let y=e2xy = e^{2x} . Then (d2ydx2)(d2xdy2)\left(\frac{d^{2}y}{dx^{2}}\right) \left(\frac{d^{2}x}{dy^{2}}\right) is

A

1

B

e2xe^{-2x}

C

2e2x2e^{-2x}

D

2e2x-2e^{-2x}

Answer

2e2x-2e^{-2x}

Explanation

Solution

y=e2xdydx=2e2xy = e^{2x} \therefore \frac{dy}{dx} = 2e^{2x} and d2ydx2=4e2x\frac{d^{2}y}{dx^{2}} = 4 e^{2x} dxdy=12e2x=12y\frac{dx}{dy} = \frac{1}{2e^{2x}} = \frac{1}{2y} d2xdy2=12y2=12e4x\therefore \frac{d^{2}x}{dy^{2}} = - \frac{1}{2y^{2}} = - \frac{1}{2} e^{-4x} d2ydx2.d2xdy2=4e2x(e2x2e2x)=2e2x\therefore \frac{d^{2}y}{dx^{2}} . \frac{d^{2}x}{dy^{2}} = 4 e^{2x} \left(\frac{-e^{-2x}}{2e^{2x}}\right) = -2e^{-2x}