Solveeit Logo

Question

Mathematics Question on Statistics

Let y=e2xy' = e^{-2x} and y=0 y = 0 when x=ex =e. Then the value of xx when y=12 y =\frac{1}{2} is

A

e1e - 1

B

12(e1)\frac{1}{2} (e - 1)

C

12(3e1)\frac{1}{2} (3e - 1)

D

none of these

Answer

none of these

Explanation

Solution

y=e2xy' = e^{-2x} ......(i)
Integrating both sides, we get
y=e2x2+cy =\frac{e^{-2x}}{- 2} +c ......(ii)
We have, y(e)=0y (e) = 0
0=e2e2+cc=e2e2\therefore \:\: 0 =\frac{e^{-2e}}{-2} + c \Rightarrow c= \frac{e^{-2e}}{2}
Putting in (ii), we get
y=e2x2+e2x2y = \frac{e^{-2x}}{-2} + \frac{e^{-2x}}{2}
y(x)=1212=e2x2+e2e2y\left(x\right)= \frac{1}{2} \Rightarrow \frac{1}{2} = \frac{e^{-2x}}{-2} + \frac{e^{-2e}}{2}
1=e2x+e2e\Rightarrow 1=-e^{-2x} + e^{-2e}
e2x=e2e1\Rightarrow e^{-2x} =e^{-2e} - 1
Taking log on both sides, we get
2x=log(e2e1)-2x = \log\left(e^{-2e} -1\right)
x=12log(e2e1)x =-\frac{1}{2}\log\left(e^{-2e} -1\right)